-
Notifications
You must be signed in to change notification settings - Fork 17
/
glmderiv.m
40 lines (36 loc) · 1.13 KB
/
glmderiv.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
function g = glmderiv(net, x)
%GLMDERIV Evaluate derivatives of GLM outputs with respect to weights.
%
% Description
% G = GLMDERIV(NET, X) takes a network data structure NET and a matrix
% of input vectors X and returns a three-index matrix mat{g} whose I,
% J, K element contains the derivative of network output K with respect
% to weight or bias parameter J for input pattern I. The ordering of
% the weight and bias parameters is defined by GLMUNPAK.
%
% Copyright (c) Ian T Nabney (1996-2001)
% Check arguments for consistency
errstring = consist(net, 'glm', x);
if ~isempty(errstring)
error(errstring);
end
ndata = size(x, 1);
if isfield(net, 'mask')
nwts = size(find(net.mask), 1);
mask_array = logical(net.mask)*ones(1, net.nout);
else
nwts = net.nwts;
end
g = zeros(ndata, nwts, net.nout);
temp = zeros(net.nwts, net.nout);
for n = 1:ndata
% Weight matrix w1
temp(1:(net.nin*net.nout), :) = kron(eye(net.nout), (x(n, :))');
% Bias term b1
temp(net.nin*net.nout+1:end, :) = eye(net.nout);
if isfield(net, 'mask')
g(n, :, :) = reshape(temp(find(mask_array)), nwts, net.nout);
else
g(n, :, :) = temp;
end
end