-
Notifications
You must be signed in to change notification settings - Fork 0
/
tree.go
454 lines (371 loc) · 9.58 KB
/
tree.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
package gorax
import (
"sort"
"strings"
)
// Tree implements a radix tree.
type Tree struct {
root node
size int
}
// New returns an empty Tree.
func New() *Tree {
return &Tree{}
}
// FromMap returns a new Tree containing the keys from an existing map.
func FromMap(values map[string]interface{}) *Tree {
t := New()
for k, v := range values {
t.Insert(k, v)
}
return t
}
// ToMap walks the Tree and converts it into a map.
func (t *Tree) ToMap() map[string]interface{} {
ret := map[string]interface{}{}
t.Walk(func(key string, value interface{}) bool {
ret[key] = value
return false
})
return ret
}
// Len returns the number of elements in the Tree.
func (t *Tree) Len() int {
return t.size
}
// Insert adds a new entry or updates an existing entry. Returns 'true' if entry was added.
func (t *Tree) Insert(key string, value interface{}) bool {
if value == nil {
value = Nil{}
}
ok := t.insert(key, value, true)
if ok {
t.size += 1
}
return ok
}
// Get is used to lookup a specific key and returns the value and if it was found.
func (t *Tree) Get(key string) (interface{}, bool) {
current, idx, split := t.find(key, nil)
if idx != len(key) || (current.isCompressed() && split != 0) || !current.isKey() {
return nil, false
}
return current.getValue(), true
}
// LongestPrefix is like Get, but instead of an exact match, it will return the longest prefix match.
func (t *Tree) LongestPrefix(prefix string) (string, interface{}, bool) {
var current *node
var currentKey string
t.find(prefix, func(key string, node *node) bool {
if node.isKey() {
current = node
currentKey = key
}
return false
})
if current == nil {
return "", nil, false
}
return currentKey, current.getValue(), true
}
// Delete deletes a key and returns the previous value and if it was deleted.
func (t *Tree) Delete(key string) (interface{}, bool) {
var nodes []*node
current, idx, split := t.find(key, func(_ string, n *node) bool {
nodes = append(nodes, n)
return false
})
if idx != len(key) || (current.isCompressed() && split != 0) || !current.isKey() {
return nil, false
}
value := current.getValue()
current.value = nil
t.size -= 1
t.delete(nodes[:len(nodes)-1], current)
return value, true
}
// DeletePrefix deletes the subtree under a prefix Returns how many nodes were deleted.
// Use this to delete large subtrees efficiently.
func (t *Tree) DeletePrefix(prefix string) int {
var counter int
var nodes []*node
current, idx, split := t.find(prefix, func(_ string, n *node) bool {
nodes = append(nodes, n)
return false
})
if len(prefix) == idx+split {
walk(current, func(key string, node *node) bool {
if node.isKey() {
counter += 1
}
return false
})
t.size -= counter
current.key = ""
current.children = nil
t.delete(nodes, current)
}
return counter
}
// WalkFn is used when walking the Tree. Takes a key and value, returning 'true' if iteration should be terminated.
type WalkFn func(key string, value interface{}) bool
// Walk walks the Tree
func (t *Tree) Walk(fn WalkFn) {
walk(&t.root, func(key string, node *node) bool {
// call WalkFn
if node.isKey() {
return fn(key, node.getValue())
}
return false
})
}
// WalkPrefix walks the Tree under a prefix.
func (t *Tree) WalkPrefix(prefix string, fn WalkFn) {
current, idx, split := t.find(prefix, nil)
if len(prefix) == idx+split {
walk(current, func(key string, node *node) bool {
// call WalkFn
if node.isKey() {
return fn(prefix+key, node.getValue())
}
return false
})
}
}
// WalkPath is used to walk the Tree, but only visiting nodes from the root down to a given leaf.
func (t *Tree) WalkPath(path string, fn WalkFn) {
t.find(path, func(key string, node *node) bool {
// call WalkFn
if node.isKey() {
return fn(key, node.getValue())
}
return false
})
}
// Minimum returns the minimum value in the Tree.
func (t *Tree) Minimum() (string, interface{}, bool) {
current := &t.root
var ret []byte
for len(current.key) > 0 {
if current.isKey() {
break
}
if current.isCompressed() {
ret = append(ret, current.key...)
} else {
ret = append(ret, current.key[0])
}
current = current.children[0]
}
return string(ret), current.getValue(), current.isKey()
}
// Maximum returns the maximum value in the Tree.
func (t *Tree) Maximum() (string, interface{}, bool) {
current := &t.root
var ret []byte
for len(current.key) > 0 {
if current.isCompressed() {
ret = append(ret, current.key...)
current = current.children[0]
} else {
ret = append(ret, current.key[len(current.key)-1])
current = current.children[len(current.key)-1]
}
}
return string(ret), current.getValue(), current.isKey()
}
func (t *Tree) insert(key string, value interface{}, overwrite bool) bool {
// find the radix tree as far as possible
current, idx, split := t.find(key, nil)
// insert value if key is already part of the tree and not in the middle of a compressed node
if idx == len(key) && (!current.isCompressed() || split == 0) {
// update the existing key if there is already one
if current.isKey() {
if overwrite {
current.value = value
}
return false
}
// insert value
current.value = value
return true
}
// split compressed node
if current.isCompressed() {
if idx != len(key) {
newChild := &node{}
if split == 0 {
current.children = []*node{
{
key: current.key[1:],
children: current.children,
},
}
current.key = string(current.key[0])
current.addChild(string(key[idx]), newChild)
} else {
var oldChild *node
if len(current.key) == split+1 {
oldChild = current.children[0]
} else {
oldChild = &node{
key: current.key[split+1:],
children: current.children,
}
}
splitNode := &node{}
splitNode.addChild(string(current.key[split]), oldChild)
splitNode.addChild(string(key[idx]), newChild)
current.key = current.key[0:split]
current.children = []*node{splitNode}
}
current = newChild
} else {
child := &node{
key: current.key[split:],
children: current.children,
}
current.key = current.key[0:split]
current.children = []*node{child}
current = child
}
idx += 1
}
// insert missing nodes
for idx < len(key) {
var size int
child := &node{}
// if there are more than one char left and the current key is empty turn it into a compressed node
if len(current.key) == 0 && len(key) > 1 {
size = len(key) - idx
current.addCompressedChild(key[idx:idx+size], child)
} else {
size = 1
current.addChild(string(key[idx]), child)
}
current = child
idx += size
}
// insert value
current.value = value
return true
}
func (t *Tree) find(key string, fn func(string, *node) bool) (*node, int, int) {
current := &t.root
var idx int
for len(current.key) > 0 && idx < len(key) {
if fn != nil {
// call function if defined
if fn(key[:idx], current) {
break
}
}
if current.isCompressed() {
// match as many chars as possible from the compressed key with the lookup key
if !strings.HasPrefix(key[idx:], current.key) {
i := sort.Search(len(current.key), func(i int) bool {
return !strings.HasPrefix(key[idx:], current.key[:i])
}) - 1
return current, idx + i, i
}
idx += len(current.key)
current = current.children[0]
} else {
// find a child whose key is matching with the lookup key
i := sort.Search(len(current.key), func(i int) bool {
return current.key[i] >= key[idx]
})
if i == len(current.key) || current.key[i] != key[idx] {
// no matching child found - break
return current, idx, 0
}
idx += 1
current = current.children[i]
}
}
if current.isLeaf() || len(key) == idx {
if fn != nil {
// call function if defined
fn(key[:idx], current)
}
}
return current, idx, 0
}
func (t *Tree) delete(nodes []*node, current *node) {
var trycompress bool
if len(current.children) == 0 {
var child *node
for current != &t.root {
child = current
current = nodes[len(nodes)-1]
nodes = nodes[:len(nodes)-1]
if current.isKey() || (!current.isCompressed() && len(current.children) != 1) {
break
}
}
if child != nil {
current.removeChild(child)
}
if len(current.children) == 1 && !current.isKey() {
trycompress = true
}
} else if len(current.children) == 1 {
trycompress = true
}
if trycompress {
var parent *node
for {
if len(nodes) == 0 {
parent = nil
break
}
parent = nodes[len(nodes)-1]
nodes = nodes[:len(nodes)-1]
if parent.isKey() || (!parent.isCompressed() && len(parent.children) != 1) {
break
}
current = parent
}
start := current
newChild := node{}
for len(current.children) != 0 {
newChild.key += current.key
newChild.children = current.children
current = current.children[len(current.children)-1]
if current.isKey() || (!current.isCompressed() && len(current.children) != 1) {
break
}
}
if newChild.key != "" {
if parent != nil {
for i, child := range parent.children {
if child == start {
parent.children[i] = &newChild
}
}
} else {
t.root = newChild
}
}
}
}
func walk(start *node, fn func(string, *node) bool) {
nodes := []*node{start}
keys := []string{""}
for len(nodes) > 0 {
// pop node
current := nodes[len(nodes)-1]
nodes = nodes[:len(nodes)-1]
// pop key
key := keys[len(keys)-1]
keys = keys[:len(keys)-1]
// call function
if fn(key, current) {
break
}
// push child nodes
nodes = append(nodes, current.getChildren()...)
// push child keys with current key as prefix
keys = append(keys, current.getKeysWithPrefix(key)...)
}
}