forked from masoudhashemi/PdfGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
175 lines (135 loc) · 5.48 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import re
from io import BytesIO, StringIO
from typing import Any, Dict, List, Union
import docx2txt
import numpy as np
import streamlit as st
from langchain import Cohere, OpenAI
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS, VectorStore
from langchain.vectorstores.faiss import FAISS
from openai.error import AuthenticationError
from pypdf import PdfReader
from embeddings import OpenAIEmbeddings
from prompts import STUFF_PROMPT
@st.experimental_memo()
def parse_docx(file: BytesIO) -> str:
text = docx2txt.process(file)
# Remove multiple newlines
text = re.sub(r"\n\s*\n", "\n\n", text)
return text
@st.experimental_memo()
def parse_pdf(file: BytesIO) -> List[str]:
pdf = PdfReader(file)
output = []
for page in pdf.pages:
text = page.extract_text()
# Merge hyphenated words
text = re.sub(r"(\w+)-\n(\w+)", r"\1\2", text)
# Fix newlines in the middle of sentences
text = re.sub(r"(?<!\n\s)\n(?!\s\n)", " ", text.strip())
# Remove multiple newlines
text = re.sub(r"\n\s*\n", "\n\n", text)
output.append(text)
return output
@st.experimental_memo()
def parse_txt(file: BytesIO) -> str:
text = file.read().decode("utf-8")
# Remove multiple newlines
text = re.sub(r"\n\s*\n", "\n\n", text)
return text
@st.experimental_memo()
def parse_csv(uploaded_file):
# To read file as bytes:
# bytes_data = uploaded_file.getvalue()
# st.write(bytes_data)
# To convert to a string based IO:
stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
# st.write(stringio)
# To read file as string:
string_data = stringio.read()
# st.write(string_data)
# Can be used wherever a "file-like" object is accepted:
# dataframe = pd.read_csv(uploaded_file)
return string_data
@st.cache(allow_output_mutation=True)
def text_to_docs(text: dict) -> List[Document]:
"""Converts a string or list of strings to a list of Documents
with metadata."""
page_docs = []
for key, text in text.items():
if isinstance(text, str):
# Take a single string as one page
text = [text]
page_docs_ = [Document(page_content=page) for page in text]
# Add page numbers as metadata
for i, doc in enumerate(page_docs_):
doc.metadata["page"] = f"{key}-{i + 1}"
page_docs.extend(page_docs_)
# Split pages into chunks
doc_chunks = []
for doc in page_docs:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=800,
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""],
chunk_overlap=0,
)
chunks = text_splitter.split_text(doc.page_content)
for i, chunk in enumerate(chunks):
doc = Document(
page_content=chunk, metadata={"page": doc.metadata["page"], "chunk": i}
)
# Add sources a metadata
doc.metadata["source"] = f"{doc.metadata['page']}-{doc.metadata['chunk']}"
doc_chunks.append(doc)
return doc_chunks
@st.cache(allow_output_mutation=True, show_spinner=False)
def embed_docs(docs: List[Document]) -> VectorStore:
"""Embeds a list of Documents and returns a FAISS index"""
if not st.session_state.get("OPENAI_API_KEY"):
raise AuthenticationError(
"Enter your OpenAI API key in the sidebar. You can get a key at https://platform.openai.com/account/api-keys."
)
else:
# Embed the chunks
embeddings = OpenAIEmbeddings(openai_api_key=st.session_state.get("OPENAI_API_KEY")) # type: ignore
index = FAISS.from_documents(docs, embeddings)
return index
@st.cache(allow_output_mutation=True)
def search_docs(index: VectorStore, query: str) -> List[Document]:
"""Searches a FAISS index for similar chunks to the query
and returns a list of Documents."""
# Search for similar chunks
docs = index.similarity_search(query, k=5)
return docs
@st.cache(allow_output_mutation=True)
def get_answer(docs: List[Document], query: str) -> Dict[str, Any]:
"""Gets an answer to a question from a list of Documents."""
# Get the answer
chain = load_qa_with_sources_chain(
OpenAI(temperature=0, openai_api_key=st.session_state.get("OPENAI_API_KEY")),
chain_type="stuff",
prompt=STUFF_PROMPT,
)
# Cohere doesn't work very well as of now.
# chain = load_qa_with_sources_chain(Cohere(temperature=0), chain_type="stuff", prompt=STUFF_PROMPT)
answer = chain({"input_documents": docs, "question": query}, return_only_outputs=True)
return answer
@st.cache(allow_output_mutation=True)
def get_sources(answer: Dict[str, Any], docs: List[Document]) -> List[Document]:
"""Gets the source documents for an answer."""
# Get sources for the answer
source_keys = [s for s in answer["output_text"].split("SOURCES: ")[-1].split(", ")]
source_docs = []
for doc in docs:
if doc.metadata["source"] in source_keys:
source_docs.append(doc)
return source_docs
def wrap_text_in_html(text: Union[str, List[str]]) -> str:
"""Wraps each text block separated by newlines in <p> tags"""
if isinstance(text, list):
# Add horizontal rules between pages
text = "\n<hr/>\n".join(text)
return "".join([f"<p>{line}</p>" for line in text.split("\n")])