forked from masoudhashemi/PdfGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
embeddings.py
105 lines (93 loc) · 4.1 KB
/
embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
"""Wrapper around OpenAI embedding models."""
from typing import Any, Dict, List, Optional
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
from openai.error import APIConnectionError, APIError, RateLimitError, Timeout
from pydantic import BaseModel, Extra, root_validator
from tenacity import retry, retry_if_exception_type, stop_after_attempt, wait_exponential
class OpenAIEmbeddings(BaseModel, Embeddings):
"""Wrapper around OpenAI embedding models.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key or pass it
as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.embeddings import OpenAIEmbeddings
openai = OpenAIEmbeddings(openai_api_key="my-api-key")
"""
client: Any #: :meta private:
document_model_name: str = "text-embedding-ada-002"
query_model_name: str = "text-embedding-ada-002"
openai_api_key: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
# TODO: deprecate this
@root_validator(pre=True, allow_reuse=True)
def get_model_names(cls, values: Dict) -> Dict:
"""Get model names from just old model name."""
if "model_name" in values:
if "document_model_name" in values:
raise ValueError(
"Both `model_name` and `document_model_name` were provided, "
"but only one should be."
)
if "query_model_name" in values:
raise ValueError(
"Both `model_name` and `query_model_name` were provided, "
"but only one should be."
)
model_name = values.pop("model_name")
values["document_model_name"] = f"text-search-{model_name}-doc-001"
values["query_model_name"] = f"text-search-{model_name}-query-001"
return values
@root_validator(allow_reuse=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
openai_api_key = get_from_dict_or_env(values, "openai_api_key", "OPENAI_API_KEY")
try:
import openai
openai.api_key = openai_api_key
values["client"] = openai.Embedding
except ImportError:
raise ValueError(
"Could not import openai python package. "
"Please it install it with `pip install openai`."
)
return values
@retry(
reraise=True,
stop=stop_after_attempt(100),
wait=wait_exponential(multiplier=1, min=10, max=60),
retry=(
retry_if_exception_type(Timeout)
| retry_if_exception_type(APIError)
| retry_if_exception_type(APIConnectionError)
| retry_if_exception_type(RateLimitError)
),
)
def _embedding_func(self, text: str, *, engine: str) -> List[float]:
"""Call out to OpenAI's embedding endpoint with exponential backoff."""
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
return self.client.create(input=[text], engine=engine)["data"][0]["embedding"]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to OpenAI's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
responses = [
self._embedding_func(text, engine=self.document_model_name) for text in texts
]
return responses
def embed_query(self, text: str) -> List[float]:
"""Call out to OpenAI's embedding endpoint for embedding query text.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
embedding = self._embedding_func(text, engine=self.query_model_name)
return embedding