forked from qusers/qligfep
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze_LIE.py
71 lines (56 loc) · 2.06 KB
/
analyze_LIE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import argparse
import glob
import numpy as np
import functions as f
import settings as s
import IO
class Run(object):
"""
"""
def __init__(self, LIEdir, *args, **kwargs):
self.LIEdir = LIEdir
self.vdw = []
self.el = []
self.a = 0.18
self.b = 0.33
self.g = 0
def read_LIE(self):
LIEs = sorted(glob.glob(self.LIEdir + '/*/*/*/md_LIE_01.log'))
for LIE in LIEs:
with open(LIE) as infile:
vdw_n = []
el_n = []
for line in infile:
line = line.split()
if len(line) > 3:
if line[0] == 'Q-surr.' and line[1] == '1':
#print line
vdw_n.append(float(line[3]))
el_n.append(float(line[4]))
self.vdw.append(vdw_n)
self.el.append(el_n)
self.vdw = np.array(self.vdw)
self.el = np.array(self.el)
def calc_LIE(self):
avg_vdw = np.mean(self.vdw, axis=0)
avg_el = np.mean(self.el, axis=0)
vdW_sem = np.nanstd(avg_vdw, ddof =1)/np.sqrt(len(avg_vdw))
vdW = np.nanmean(avg_vdw)
el_sem = np.nanstd(avg_el, ddof =1)/np.sqrt(len(avg_el))
el = np.nanmean(avg_el)
print(vdW, vdW_sem, el, el_sem)
dG_LIE = self.a * vdW + self.b * el * self.g
print(dG_LIE)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog='analyzeLIE',
formatter_class=argparse.RawDescriptionHelpFormatter,
description = ' == Analyse LIE == ')
parser.add_argument('-L', '--LIEdir',
dest = "LIEdir",
required = True,
help = "name of LIE directory (FEP_$)")
args = parser.parse_args()
run = Run(LIEdir = args.LIEdir)
run.read_LIE()
run.calc_LIE()