-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
56 lines (43 loc) · 1.43 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import keras
from keras.models import load_model
from agent.agent import Agent
from functions import *
import sys
try:
if len(sys.argv) != 3:
print ("Usage: python evaluate.py [stock] [model]")
exit()
stock_name, model_name = sys.argv[1], sys.argv[2]
model = load_model("models/" + model_name)
window_size = model.layers[0].input.shape.as_list()[1]
agent = Agent(window_size, True, model_name)
data = getStockDataVec(stock_name)
l = len(data) - 1
batch_size = 32
state = getState(data, 0, window_size + 1)
total_profit = 0
agent.inventory = []
for t in range(l):
action = agent.act(state)
# sit
next_state = getState(data, t + 1, window_size + 1)
reward = 0
if action == 1: # buy
agent.inventory.append(data[t])
print ("Buy: " + formatPrice(data[t]))
elif action == 2 and len(agent.inventory) > 0: # sell
bought_price = agent.inventory.pop(0)
reward = max(data[t] - bought_price, 0)
total_profit += data[t] - bought_price
print ("Sell: " + formatPrice(data[t]) + " | Profit: " + formatPrice(data[t] - bought_price))
done = True if t == l - 1 else False
agent.memory.append((state, action, reward, next_state, done))
state = next_state
if done:
print ("--------------------------------")
print (stock_name + " Total Profit: " + formatPrice(total_profit))
print ("--------------------------------")
if len(agent.memory) > batch_size:
agent.expReplay(batch_size)
finally:
exit()