forked from ellisdg/3DUnetCNN
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
113 lines (98 loc) · 5.63 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import os
import glob
from unet3d.data import write_data_to_file, open_data_file
from unet3d.generator import get_training_and_validation_generators
from unet3d.model import unet_model_3d
from unet3d.training import load_old_model, train_model
config = dict()
config["pool_size"] = (2, 2, 2) # pool size for the max pooling operations
config["image_shape"] = (144, 144, 144) # This determines what shape the images will be cropped/resampled to.
config["patch_shape"] = (64, 64, 64) # switch to None to train on the whole image
config["labels"] = (1, 2, 4) # the label numbers on the input image
config["n_labels"] = len(config["labels"])
config["all_modalities"] = ["t1", "t1Gd", "flair", "t2"]
config["training_modalities"] = config["all_modalities"] # change this if you want to only use some of the modalities
config["nb_channels"] = len(config["training_modalities"])
if "patch_shape" in config and config["patch_shape"] is not None:
config["input_shape"] = tuple([config["nb_channels"]] + list(config["patch_shape"]))
else:
config["input_shape"] = tuple([config["nb_channels"]] + list(config["image_shape"]))
config["truth_channel"] = config["nb_channels"]
config["deconvolution"] = True # if False, will use upsampling instead of deconvolution
config["batch_size"] = 6
config["validation_batch_size"] = 12
config["n_epochs"] = 500 # cutoff the training after this many epochs
config["patience"] = 10 # learning rate will be reduced after this many epochs if the validation loss is not improving
config["early_stop"] = 50 # training will be stopped after this many epochs without the validation loss improving
config["initial_learning_rate"] = 0.00001
config["learning_rate_drop"] = 0.5 # factor by which the learning rate will be reduced
config["validation_split"] = 0.8 # portion of the data that will be used for training
config["flip"] = False # augments the data by randomly flipping an axis during
config["permute"] = True # data shape must be a cube. Augments the data by permuting in various directions
config["distort"] = None # switch to None if you want no distortion
config["augment"] = config["flip"] or config["distort"]
config["validation_patch_overlap"] = 0 # if > 0, during training, validation patches will be overlapping
config["training_patch_start_offset"] = (16, 16, 16) # randomly offset the first patch index by up to this offset
config["skip_blank"] = True # if True, then patches without any target will be skipped
config["data_file"] = os.path.abspath("brats_data.h5")
config["model_file"] = os.path.abspath("tumor_segmentation_model.h5")
config["training_file"] = os.path.abspath("training_ids.pkl")
config["validation_file"] = os.path.abspath("validation_ids.pkl")
config["overwrite"] = False # If True, will previous files. If False, will use previously written files.
def fetch_training_data_files():
training_data_files = list()
for subject_dir in glob.glob(os.path.join(os.path.dirname(__file__), "data", "preprocessed", "*", "*")):
subject_files = list()
for modality in config["training_modalities"] + ["truth"]:
subject_files.append(os.path.join(subject_dir, modality + ".nii.gz"))
training_data_files.append(tuple(subject_files))
return training_data_files
def main(overwrite=False):
# convert input images into an hdf5 file
if overwrite or not os.path.exists(config["data_file"]):
training_files = fetch_training_data_files()
write_data_to_file(training_files, config["data_file"], image_shape=config["image_shape"])
data_file_opened = open_data_file(config["data_file"])
if not overwrite and os.path.exists(config["model_file"]):
model = load_old_model(config["model_file"])
else:
# instantiate new model
model = unet_model_3d(input_shape=config["input_shape"],
pool_size=config["pool_size"],
n_labels=config["n_labels"],
initial_learning_rate=config["initial_learning_rate"],
deconvolution=config["deconvolution"])
# get training and testing generators
train_generator, validation_generator, n_train_steps, n_validation_steps = get_training_and_validation_generators(
data_file_opened,
batch_size=config["batch_size"],
data_split=config["validation_split"],
overwrite=overwrite,
validation_keys_file=config["validation_file"],
training_keys_file=config["training_file"],
n_labels=config["n_labels"],
labels=config["labels"],
patch_shape=config["patch_shape"],
validation_batch_size=config["validation_batch_size"],
validation_patch_overlap=config["validation_patch_overlap"],
training_patch_start_offset=config["training_patch_start_offset"],
permute=config["permute"],
augment=config["augment"],
skip_blank=config["skip_blank"],
augment_flip=config["flip"],
augment_distortion_factor=config["distort"])
# run training
train_model(model=model,
model_file=config["model_file"],
training_generator=train_generator,
validation_generator=validation_generator,
steps_per_epoch=n_train_steps,
validation_steps=n_validation_steps,
initial_learning_rate=config["initial_learning_rate"],
learning_rate_drop=config["learning_rate_drop"],
learning_rate_patience=config["patience"],
early_stopping_patience=config["early_stop"],
n_epochs=config["n_epochs"])
data_file_opened.close()
if __name__ == "__main__":
main(overwrite=config["overwrite"])