-
Notifications
You must be signed in to change notification settings - Fork 14
/
SignalProc.py
1476 lines (1266 loc) · 60.4 KB
/
SignalProc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# SignalProc.py
# A variety of signal processing algorithms for AviaNZ.
# Version 3.0 14/09/20
# Authors: Stephen Marsland, Nirosha Priyadarshani, Julius Juodakis, Virginia Listanti
# AviaNZ bioacoustic analysis program
# Copyright (C) 2017--2020
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import numpy as np
import scipy.signal as signal
import scipy.fftpack as fft
from scipy.stats import boxcox
import wavio
import librosa
import copy
import gc
from PyQt5.QtGui import QImage
QtMM = True
try:
from PyQt5.QtMultimedia import QAudioFormat
except ImportError:
print("No QtMM")
QtMM = False
# for multitaper spec:
specExtra = True
try:
from spectrum import dpss, pmtm
except ImportError:
specExtra = False
# for fund freq
from scipy.signal import medfilt
# for impulse masking
from itertools import chain, repeat
class SignalProc:
""" This class reads and holds the audiodata and spectrogram, to be used in the main interface.
Inverse, denoise, and other processing algorithms are provided here.
Also bandpass and Butterworth bandpass filters.
Primary parameters are the width of a spectrogram window (window_width) and the shift between them (incr)
"""
def __init__(self, window_width=256, incr=128, minFreqShow=0, maxFreqShow=float("inf")):
# maxFreq = 0 means fall back to Fs/2 for any file.
self.window_width=window_width
self.incr=incr
self.minFreqShow = minFreqShow
self.maxFreqShow = maxFreqShow
self.data = []
# only accepting wav files of this format
if QtMM:
self.audioFormat = QAudioFormat()
self.audioFormat.setCodec("audio/pcm")
self.audioFormat.setByteOrder(QAudioFormat.LittleEndian)
def readWav(self, file, len=None, off=0, silent=False):
""" Args the same as for wavio.read: filename, length in seconds, offset in seconds. """
wavobj = wavio.read(file, len, off)
self.data = wavobj.data
# take only left channel
if np.shape(np.shape(self.data))[0] > 1:
self.data = self.data[:, 0]
if QtMM:
self.audioFormat.setChannelCount(1)
# force float type
if self.data.dtype != 'float':
self.data = self.data.astype('float')
# total file length in s read from header (useful for paging)
self.fileLength = wavobj.nframes
self.sampleRate = wavobj.rate
if QtMM:
self.audioFormat.setSampleSize(wavobj.sampwidth * 8)
self.audioFormat.setSampleRate(self.sampleRate)
# Only 8-bit WAVs are unsigned:
if wavobj.sampwidth==1:
self.audioFormat.setSampleType(QAudioFormat.UnSignedInt)
else:
self.audioFormat.setSampleType(QAudioFormat.SignedInt)
# *Freq sets hard bounds, *Show can limit the spec display
self.minFreq = 0
self.maxFreq = self.sampleRate // 2
self.minFreqShow = max(self.minFreq, self.minFreqShow)
self.maxFreqShow = min(self.maxFreq, self.maxFreqShow)
if not silent:
if QtMM:
print("Detected format: %d channels, %d Hz, %d bit samples" % (self.audioFormat.channelCount(), self.audioFormat.sampleRate(), self.audioFormat.sampleSize()))
def readBmp(self, file, len=None, off=0, silent=False, rotate=True, repeat=True):
""" Reads DOC-standard bat recordings in 8x row-compressed BMP format.
For similarity with readWav, accepts len and off args, in seconds.
rotate: if True, rotates to match setImage and other spectrograms (rows=time)
otherwise preserves normal orientation (cols=time)
"""
# !! Important to set these, as they are used in other functions
self.sampleRate = 176000
# TODO: why was this here?
#if not repeat:
#self.incr = 512
self.incr = 512
img = QImage(file, "BMP")
h = img.height()
w = img.width()
colc = img.colorCount()
if h==0 or w==0:
print("ERROR: image was not loaded")
return(1)
# Check color format and convert to grayscale
if not silent and (not img.allGray() or colc>256):
print("Warning: image provided not in 8-bit grayscale, information will be lost")
img.convertTo(QImage.Format_Grayscale8)
# Convert to numpy
# (remember that pyqtgraph images are column-major)
ptr = img.constBits()
ptr.setsize(h*w*1)
img2 = np.array(ptr).reshape(h, w)
# Determine if original image was rotated, based on expected num of freq bins and freq 0 being empty
# We also used to check if np.median(img2[-1,:])==0,
# but some files happen to have the bottom freq bin around 90, so we cannot rely on that.
if h==64:
# standard DoC format
pass
elif w==64:
# seems like DoC format, rotated at -90*
img2 = np.rot90(img2, 1, (1,0))
w, h = h, w
else:
print("ERROR: image does not appear to be in DoC format!")
print("Format details:")
print(img2)
print(h, w)
print(min(img2[-1,:]), max(img2[-1,:]))
print(np.sum(img2[-1,:]>0))
print(np.median(img2[-1,:]))
return(1)
#print(np.shape(img2))
# Could skip that for visual mode - maybe useful for establishing contrast?
img2[-1, :] = 254 # lowest freq bin is 0, flip that
img2 = 255 - img2 # reverse value having the black as the most intense
img2 = img2/np.max(img2) # normalization
img2 = img2[:, 1:] # Cutting first time bin because it only contains the scale and cutting last columns
if repeat:
img2 = np.repeat(img2, 8, axis=0) # repeat freq bins 7 times to fit invertspectrogram
#print(np.shape(img2))
self.data = []
self.fileLength = (w-2)*self.incr + self.window_width # in samples
# Alternatively:
# self.fileLength = self.convertSpectoAmpl(h-1)*self.sampleRate
# NOTE: conversions will use self.sampleRate and self.incr, so ensure those are already set!
# trim to specified offset and length:
if off>0 or len is not None:
# Convert offset from seconds to pixels
off = int(self.convertAmpltoSpec(off))
if len is None:
img2 = img2[:, off:]
else:
# Convert length from seconds to pixels:
len = int(self.convertAmpltoSpec(len))
img2 = img2[:, off:(off+len)]
if rotate:
# rotate for display, b/c required spectrogram dimensions are:
# t increasing over rows, f increasing over cols
# This will be enough if the original image was spectrogram-shape.
img2 = np.rot90(img2, 1, (1,0))
self.sg = img2
if QtMM:
self.audioFormat.setChannelCount(0)
self.audioFormat.setSampleSize(0)
self.audioFormat.setSampleRate(self.sampleRate)
#else:
#self.audioFormat['channelCount'] = 0
#self.audioFormat['sampleSize'] = 0
#self.audioFormat['sampleRate'] = self.sampleRate
self.minFreq = 0
self.maxFreq = self.sampleRate //2
self.minFreqShow = max(self.minFreq, self.minFreqShow)
self.maxFreqShow = min(self.maxFreq, self.maxFreqShow)
if not silent:
print("Detected BMP format: %d x %d px, %d colours" % (w, h, colc))
return(0)
def resample(self, target):
if len(self.data)==0:
print("Warning: no data set to resmample")
return
if target==self.sampleRate:
print("No resampling needed")
return
self.data = librosa.core.audio.resample(self.data, self.sampleRate, target)
self.sampleRate = target
if QtMM:
self.audioFormat.setSampleRate(target)
#else:
#self.audioFormat['sampleRate'] = target
self.minFreq = 0
self.maxFreq = self.sampleRate // 2
self.fileLength = len(self.data)
def convertAmpltoSpec(self, x):
""" Unit conversion, for easier use wherever spectrograms are needed """
return x*self.sampleRate/self.incr
def convertSpectoAmpl(self,x):
""" Unit conversion """
return x*self.incr/self.sampleRate
def convertFreqtoY(self,f):
""" Unit conversion """
sgy = np.shape(self.sg)[1]
if f>self.maxFreqShow:
return -100
else:
return (f-self.minFreqShow) * sgy / (self.maxFreqShow - self.minFreqShow)
# SRM: TO TEST **
def convertHztoMel(self,f):
return 1125*np.log(1+f/700)
#return 2595*np.log10(1+f/700)
def convertMeltoHz(self,m):
return 700*(np.exp(m/1125)-1)
#return 700*(10**(m/2595)-1)
def convertHztoBark(self,f):
# TODO: Currently doesn't work on arrays
b = (26.81*f)/(1960+f) -0.53
if b<2:
b += 0.15/(2-b)
elif b>20.1:
b += 0.22*(b-20.1)
#inds = np.where(b<2)
#print(inds)
#b[inds] += 0.15/(2-b[inds])
#inds = np.where(b>20.1)
#b[inds] += 0.22*(b[inds]-20.1)
return b
def convertBarktoHz(self,b):
inds = np.where(b<2)
b[inds] = (b[inds]-0.3)/0.85
inds = np.where(b>20.1)
b[inds] = (b[inds]+4.422)/1.22
return 1960*((b+0.53)/(26.28-b))
def mel_filter(self,filter='mel',nfilters=40,minfreq=0,maxfreq=None,normalise=True):
# Transform the spectrogram to mel or bark scale
if maxfreq is None:
maxfreq = self.sampleRate/2
print(filter,nfilters,minfreq,maxfreq,normalise)
if filter=='mel':
filter_points = np.linspace(self.convertHztoMel(minfreq), self.convertHztoMel(maxfreq), nfilters + 2)
bins = self.convertMeltoHz(filter_points)
elif filter=='bark':
filter_points = np.linspace(self.convertHztoBark(minfreq), self.convertHztoBark(maxfreq), nfilters + 2)
bins = self.convertBarktoHz(filter_points)
else:
print("ERROR: filter not known",filter)
return(1)
nfft = np.shape(self.sg)[1]
freq_points = np.linspace(minfreq,maxfreq,nfft)
filterbank = np.zeros((nfft,nfilters))
for m in range(nfilters):
# Find points in first and second halves of the triangle
inds1 = np.where((freq_points>=bins[m]) & (freq_points<=bins[m+1]))
inds2 = np.where((freq_points>=bins[m+1]) & (freq_points<=bins[m+2]))
# Compute their contributions
filterbank[inds1,m] = (freq_points[inds1] - bins[m]) / (bins[m+1] - bins[m])
filterbank[inds2,m] = (bins[m+2] - freq_points[inds2]) / (bins[m+2] - bins[m+1])
if normalise:
# Normalise to unit area if desired
norm = filterbank.sum(axis=0)
norm = np.where(norm==0,1,norm)
filterbank /= norm
return filterbank
def convertToMel(self,filt='mel',nfilters=40,minfreq=0,maxfreq=None,normalise=True):
filterbank = self.mel_filter(filt,nfilters,minfreq,maxfreq,normalise)
self.sg = np.dot(self.sg,filterbank)
# ====
def setWidth(self,window_width,incr):
# Does what it says. Called when the user modifies the spectrogram parameters
self.window_width = window_width
self.incr = incr
def setData(self,audiodata,sampleRate=None):
self.data = audiodata
if sampleRate is not None:
self.sampleRate = sampleRate
def SnNR(self,startSignal,startNoise):
# Compute the estimated signal-to-noise ratio
pS = np.sum(self.data[startSignal:startSignal+self.length]**2)/self.length
pN = np.sum(self.data[startNoise:startNoise+self.length]**2)/self.length
return 10.*np.log10(pS/pN)
def equalLoudness(self,data):
# TODO: Assumes 16000 sampling rate, fix!
# Basically, save a few more sets of filter coefficients...
# Basic equal loudness curve.
# This is for humans, NOT birds (there is a paper that claims to have some, but I can't access it:
# https://doi.org/10.1121/1.428951)
# The filter weights were obtained from Matlab (using yulewalk) for the standard 80 dB ISO curve
# for a sampling rate of 16000
# 10 coefficient Yule-Walker fit for [0,120;20,113;30,103;40,97;50,93;60,91;70,89;80,87;90,86;100,85;200,78;300,76;400,76;500,76;600,76;700,77;800,78;900,79.5;1000,80;1500,79;2000,77;2500,74;3000,71.5;3700,70;4000,70.5;5000,74;6000,79;7000,84;8000,86]
# Or at least, EL80(:,1)./(fs/2) and m=10.^((70-EL80(:,2))/20);
ay = np.array([1.0000,-0.6282, 0.2966,-0.3726,0.0021,-0.4203,0.2220,0.0061, 0.0675, 0.0578,0.0322])
by = np.array([0.4492,-0.1435,-0.2278,-0.0142,0.0408,-0.1240,0.0410,0.1048,-0.0186,-0.0319,0.0054])
# Butterworth highpass
ab = np.array([1.0000,-1.9167,0.9201])
bb = np.array([0.9592,-1.9184,0.9592])
data = signal.lfilter(by,ay,data)
data = signal.lfilter(bb,ab,data)
return data
# from memory_profiler import profile
# fp = open('memory_profiler_sp.log', 'w+')
# @profile(stream=fp)
def spectrogram(self,window_width=None,incr=None,window='Hann',sgType='Standard',sgScale='Linear',nfilters=40,equal_loudness=False,mean_normalise=True,onesided=True,need_even=False):
""" Compute the spectrogram from amplitude data
Returns the power spectrum, not the density -- compute 10.*log10(sg) 10.*log10(sg) before plotting.
Uses absolute value of the FT, not FT*conj(FT), 'cos it seems to give better discrimination
Options: multitaper version, but it's slow, mean normalised, even, one-sided.
This version is faster than the default versions in pylab and scipy.signal
Assumes that the values are not normalised.
"""
if self.data is None or len(self.data)==0:
print("ERROR: attempted to calculate spectrogram without audiodata")
return
#S = librosa.feature.melspectrogram(self.data, sr=self.sampleRate, power=1)
#log_S = librosa.amplitude_to_db(S, ref=np.max)
#self.sg = librosa.pcen(S * (2**31))
#return self.sg.T
if window_width is None:
window_width = self.window_width
if incr is None:
incr = self.incr
# clean handling of very short segments:
if len(self.data) <= window_width:
window_width = len(self.data) - 1
self.sg = np.copy(self.data)
if self.sg.dtype != 'float':
self.sg = self.sg.astype('float')
# Set of window options
if window=='Hann':
# This is the Hann window
window = 0.5 * (1 - np.cos(2 * np.pi * np.arange(window_width) / (window_width - 1)))
elif window=='Parzen':
# Parzen (window_width even)
n = np.arange(window_width) - 0.5*window_width
window = np.where(np.abs(n)<0.25*window_width,1 - 6*(n/(0.5*window_width))**2*(1-np.abs(n)/(0.5*window_width)), 2*(1-np.abs(n)/(0.5*window_width))**3)
elif window=='Welch':
# Welch
window = 1.0 - ((np.arange(window_width) - 0.5*(window_width-1))/(0.5*(window_width-1)))**2
elif window=='Hamming':
# Hamming
alpha = 0.54
beta = 1.-alpha
window = alpha - beta*np.cos(2 * np.pi * np.arange(window_width) / (window_width - 1))
elif window=='Blackman':
# Blackman
alpha = 0.16
a0 = 0.5*(1-alpha)
a1 = 0.5
a2 = 0.5*alpha
window = a0 - a1*np.cos(2 * np.pi * np.arange(window_width) / (window_width - 1)) + a2*np.cos(4 * np.pi * np.arange(window_width) / (window_width - 1))
elif window=='BlackmanHarris':
# Blackman-Harris
a0 = 0.358375
a1 = 0.48829
a2 = 0.14128
a3 = 0.01168
window = a0 - a1*np.cos(2 * np.pi * np.arange(window_width) / (window_width - 1)) + a2*np.cos(4 * np.pi * np.arange(window_width) / (window_width - 1)) - a3*np.cos(6 * np.pi * np.arange(window_width) / (window_width - 1))
elif window=='Ones':
window = np.ones(window_width)
else:
print("Unknown window, using Hann")
window = 0.5 * (1 - np.cos(2 * np.pi * np.arange(window_width) / (window_width - 1)))
if equal_loudness:
self.sg = self.equalLoudness(self.sg)
if mean_normalise:
self.sg -= self.sg.mean()
starts = range(0, len(self.sg) - window_width, incr)
if sgType=='Multi-tapered':
if specExtra:
[tapers, eigen] = dpss(window_width, 2.5, 4)
counter = 0
out = np.zeros((len(starts),window_width // 2))
for start in starts:
Sk, weights, eigen = pmtm(self.sg[start:start + window_width], v=tapers, e=eigen, show=False)
Sk = abs(Sk)**2
Sk = np.mean(Sk.T * weights, axis=1)
out[counter:counter + 1,:] = Sk[window_width // 2:].T
counter += 1
self.sg = np.fliplr(out)
else:
print("Option not available")
elif sgType=='Reassigned':
ft = np.zeros((len(starts), window_width),dtype='complex')
ft2 = np.zeros((len(starts), window_width),dtype='complex')
for i in starts:
winddata = window * self.sg[i:i + window_width]
ft[i // incr, :] = fft.fft(winddata)[:window_width]
winddata = window * np.roll(self.sg[i:i + window_width],1)
ft2[i // incr, :] = fft.fft(winddata)[:window_width]
# Approximate the derivative by finite differences and get the angle of the complex number
CIF = np.mod(np.angle(ft*np.conj(ft2))/(2*np.pi),1.0)
delay = (0.5 - np.mod(np.angle(ft*np.conj(np.roll(ft,1,axis=1)))/(2*np.pi),1.0))
# Messiness. Need to work out where to put each pixel
# I wish I could think of a way that didn't need a histogram
times = np.tile(np.arange(0, (len(self.data) - window_width)/self.sampleRate, incr/self.sampleRate) + window_width/self.sampleRate/2,(np.shape(delay)[1],1)).T + delay*window_width/self.sampleRate
self.sg,_,_ = np.histogram2d(times.flatten(),CIF.flatten(),weights=np.abs(ft).flatten(),bins=np.shape(ft))
self.sg = np.absolute(self.sg[:, :window_width //2]) #+ 0.1
print("SG range:", np.min(self.sg),np.max(self.sg))
else:
if need_even:
starts = np.hstack((starts, np.zeros((window_width - len(self.sg) % window_width),dtype=int)))
# this mode is optimized for speed, but reportedly sometimes
# results in crashes when lots of large files are batch processed.
# The FFTs here could be causing this, but I'm not sure.
# hi_mem = False should switch FFTs to go over smaller vectors
# and possibly use less caching, at the cost of 1.5x longer CPU time.
hi_mem = True
if hi_mem:
ft = np.zeros((len(starts), window_width))
for i in starts:
ft[i // incr, :] = self.sg[i:i + window_width]
ft = np.multiply(window, ft)
if onesided:
self.sg = np.absolute(fft.fft(ft)[:, :window_width //2])
else:
self.sg = np.absolute(fft.fft(ft))
else:
if onesided:
ft = np.zeros((len(starts), window_width//2))
for i in starts:
winddata = window * self.sg[i:i + window_width]
ft[i // incr, :] = fft.fft(winddata)[:window_width//2]
else:
ft = np.zeros((len(starts), window_width))
for i in starts:
winddata = window * self.sg[i:i + window_width]
ft[i // incr, :] = fft.fft(winddata)
self.sg = np.absolute(ft)
print(np.min(self.sg),np.max(self.sg))
del ft
gc.collect()
#sg = (ft*np.conj(ft))[:,window_width // 2:].T
if sgScale == 'Mel Frequency':
self.convertToMel(filt='mel',nfilters=nfilters,minfreq=0,maxfreq=None,normalise=True)
elif sgScale == 'Bark Frequency':
self.convertToMel(filt='bark',nfilters=nfilters,minfreq=0,maxfreq=None,normalise=True)
return self.sg
def normalisedSpec(self, tr="Log"):
""" Assumes the spectrogram was precomputed.
Converts it to a scale appropriate for plotting
tr: transform, "Log" or Box-Cox" or "Sigmoid" or "PCEN" or "Batmode".
Latter sets a non-normalised log, useful for fixed-scale bat images.
"""
LOG_OFFSET = 1e-7
if tr=="Log":
sg = self.sg + LOG_OFFSET
minsg = np.min(sg)
sg = 10*(np.log10(sg)-np.log10(minsg))
sg = np.abs(sg)
return sg
elif tr=="Batmode":
sg = self.sg + LOG_OFFSET
sg = 10*np.log10(sg)
sg = np.abs(sg)
return sg
elif tr=="Box-Cox":
size = np.shape(self.sg)
sg = self.sg + LOG_OFFSET
sg = np.abs(sg.flatten())
sg, lam = boxcox(sg)
return np.reshape(sg, size)
elif tr=="Sigmoid":
sig = 1/(1+np.exp(1.2))
return self.sg**sig
elif tr=="PCEN":
# Per Channel Energy Normalisation (non-trained version) arXiv 1607.05666, arXiv 1905.08352v2
gain=0.8
bias=10
power=0.25
t=0.060
eps=1e-6
s = 1 - np.exp( -self.incr / (t*self.sampleRate))
M = signal.lfilter([s],[1,s-1],self.sg)
smooth = (eps + M)**(-gain)
return (self.sg*smooth+bias)**power - bias**power
else:
print("ERROR: unrecognized transformation", tr)
def Stockwell(self):
# Stockwell transform (Brown et al. version)
# Need to get the starts etc. sorted
width = len(self.audiodata) // 2
# Gaussian window for frequencies
f_half = np.arange(0, width + 1) / (2 * width)
f = np.concatenate((f_half, np.flipud(-f_half[1:-1])))
p = 2 * np.pi * np.outer(f, 1 / f_half[1:])
window = np.exp(-p ** 2 / 2).T
f_tran = fft.fft(self.audiodata, 2*width, overwrite_x=True)
diag_con = np.linalg.toeplitz(np.conj(f_tran[:width + 1]), f_tran)
# Remove zero freq line
diag_con = diag_con[1:width + 1, :]
return np.flipud(fft.ifft(diag_con * window, axis=1))
def bandpassFilter(self,data=None,sampleRate=None,start=0,end=None):
""" FIR bandpass filter
128 taps, Hamming window, very basic.
"""
if data is None:
data = self.data
if sampleRate is None:
sampleRate = self.sampleRate
if end is None:
end = sampleRate/2
start = max(start,0)
end = min(end,sampleRate/2)
if start == 0 and end == sampleRate/2:
print("No filter needed!")
return data
nyquist = sampleRate/2
ntaps = 129
if start == 0:
# Low pass
taps = signal.firwin(ntaps, cutoff=[end / nyquist], window=('hamming'), pass_zero=True)
elif end == sampleRate/2:
# High pass
taps = signal.firwin(ntaps, cutoff=[start / nyquist], window=('hamming'), pass_zero=False)
else:
# Bandpass
taps = signal.firwin(ntaps, cutoff=[start / nyquist, end / nyquist], window=('hamming'), pass_zero=False)
#ntaps, beta = signal.kaiserord(ripple_db, width)
#taps = signal.firwin(ntaps,cutoff = [500/nyquist,8000/nyquist], window=('kaiser', beta),pass_zero=False)
return signal.lfilter(taps, 1.0, data)
def ButterworthBandpass(self,data,sampleRate,low=0,high=None,band=0.005):
""" Basic IIR bandpass filter.
Identifies order of filter, max 10. If single-stage polynomial is unstable,
switches to order 30, second-order filter.
Args:
1-2. data and sample rate.
3-4. Low and high pass frequencies in Hz
5. difference between stopband and passband, in fraction of Nyquist.
Filter will lose no more than 3 dB in freqs [low,high], and attenuate
at least 40 dB outside [low-band*Fn, high+band*Fn].
Does double-pass filtering - slower, but keeps original phase.
"""
if data is None:
data = self.data
if sampleRate is None:
sampleRate = self.sampleRate
nyquist = sampleRate/2
if high is None:
high = nyquist
low = max(low,0)
high = min(high,nyquist)
# convert freqs to fractions of Nyquist:
lowPass = low/nyquist
highPass = high/nyquist
lowStop = lowPass-band
highStop = highPass+band
# safety checks for values near edges
if lowStop<=0:
lowStop = lowPass/2
if highStop>=1:
highStop = (1+highPass)/2
if lowPass == 0 and highPass == 1:
print("No filter needed!")
return data
elif lowPass == 0:
# Low pass
# calculate the best order
order,wN = signal.buttord(highPass, highStop, 3, 40)
if order>10:
order=10
b, a = signal.butter(order,wN, btype='lowpass')
elif highPass == 1:
# High pass
# calculate the best order
order,wN = signal.buttord(lowPass, lowStop, 3, 40)
if order>10:
order=10
b, a = signal.butter(order,wN, btype='highpass')
else:
# Band pass
# calculate the best order
order,wN = signal.buttord([lowPass, highPass], [lowStop, highStop], 3, 40)
if order>10:
order=10
b, a = signal.butter(order,wN, btype='bandpass')
# check if filter is stable
filterUnstable = np.any(np.abs(np.roots(a))>1)
if filterUnstable:
# redesign to SOS and filter.
# uses order=30 because why not
print("single-stage filter unstable, switching to SOS filtering")
if lowPass == 0:
sos = signal.butter(30, wN, btype='lowpass', output='sos')
elif highPass == 1:
sos = signal.butter(30, wN, btype='highpass', output='sos')
else:
sos = signal.butter(30, wN, btype='bandpass', output='sos')
# do the actual filtering
data = signal.sosfiltfilt(sos, data)
else:
# do the actual filtering
data = signal.filtfilt(b, a, data)
return data
def FastButterworthBandpass(self,data,low=0,high=None):
""" Basic IIR bandpass filter.
Streamlined to be fast - for use in antialiasing etc.
Tries to construct a filter of order 7, with critical bands at +-0.002 Fn.
This corresponds to +- 16 Hz or so.
If single-stage polynomial is unstable,
switches to order 30, second-order filter.
Args:
1-2. data and sample rate.
3-4. Low and high pass frequencies in fraction of Nyquist
Does single-pass filtering, so does not retain phase.
"""
if data is None:
data = self.data
# convert freqs to fractions of Nyquist:
lowPass = max(low-0.002, 0)
highPass = min(high+0.002, 1)
if lowPass == 0 and highPass == 1:
print("No filter needed!")
return data
elif lowPass == 0:
# Low pass
b, a = signal.butter(7, highPass, btype='lowpass')
elif highPass == 1:
# High pass
b, a = signal.butter(7, lowPass, btype='highpass')
else:
# Band pass
b, a = signal.butter(7, [lowPass, highPass], btype='bandpass')
# check if filter is stable
filterUnstable = True
try:
filterUnstable = np.any(np.abs(np.roots(a))>1)
except Exception as e:
print("Warning:", e)
filterUnstable = True
if filterUnstable:
# redesign to SOS and filter.
# uses order=30 because why not
print("single-stage filter unstable, switching to SOS filtering")
if lowPass == 0:
sos = signal.butter(30, highPass, btype='lowpass', output='sos')
elif highPass == 1:
sos = signal.butter(30, lowPass, btype='highpass', output='sos')
else:
sos = signal.butter(30, [lowPass, highPass], btype='bandpass', output='sos')
# do the actual filtering
data = signal.sosfilt(sos, data)
else:
data = signal.lfilter(b, a, data)
return data
# The next functions perform spectrogram inversion
def invertSpectrogram(self,sg,window_width=256,incr=64,nits=10, window='Hann'):
# Assumes that this is the plain (not power) spectrogram
# Make the spectrogram two-sided and make the values small
sg = np.concatenate([sg, sg[:, ::-1]], axis=1)
sg_best = copy.deepcopy(sg)
for i in range(nits):
invertedSgram = self.inversion_iteration(sg_best, incr, calculate_offset=True,set_zero_phase=(i==0), window=window)
self.setData(invertedSgram)
est = self.spectrogram(window_width, incr, onesided=False,need_even=True, window=window)
phase = est / np.maximum(np.max(sg)/1E8, np.abs(est))
sg_best = sg * phase[:len(sg)]
invertedSgram = self.inversion_iteration(sg_best, incr, calculate_offset=True,set_zero_phase=False, window=window)
return np.real(invertedSgram)
def inversion_iteration(self,sg, incr, calculate_offset=True, set_zero_phase=True, window='Hann'):
"""
Under MSR-LA License
Based on MATLAB implementation from Spectrogram Inversion Toolbox
References
----------
D. Griffin and J. Lim. Signal estimation from modified
short-time Fourier transform. IEEE Trans. Acoust. Speech
Signal Process., 32(2):236-243, 1984.
Malcolm Slaney, Daniel Naar and Richard F. Lyon. Auditory
Model Inversion for Sound Separation. Proc. IEEE-ICASSP,
Adelaide, 1994, II.77-80.
Xinglei Zhu, G. Beauregard, L. Wyse. Real-Time Signal
Estimation from Modified Short-Time Fourier Transform
Magnitude Spectra. IEEE Transactions on Audio Speech and
Language Processing, 08/2007.
"""
size = int(np.shape(sg)[1] // 2)
wave = np.zeros((np.shape(sg)[0] * incr + size),dtype='float64')
# Getting overflow warnings with 32 bit...
#wave = wave.astype('float64')
total_windowing_sum = np.zeros((np.shape(sg)[0] * incr + size))
#Virginia: adding different windows
# Set of window options
if window=='Hann':
# This is the Hann window
window = 0.5 * (1 - np.cos(2 * np.pi * np.arange(size) / (size - 1)))
elif window=='Parzen':
# Parzen (window_width even)
n = np.arange(size) - 0.5*size
window = np.where(np.abs(n)<0.25*size,1 - 6*(n/(0.5*size))**2*(1-np.abs(n)/(0.5*size)), 2*(1-np.abs(n)/(0.5*size))**3)
elif window=='Welch':
# Welch
window = 1.0 - ((np.arange(size) - 0.5*(size-1))/(0.5*(size-1)))**2
elif window=='Hamming':
# Hamming
alpha = 0.54
beta = 1.-alpha
window = alpha - beta*np.cos(2 * np.pi * np.arange(size) / (size - 1))
elif window=='Blackman':
# Blackman
alpha = 0.16
a0 = 0.5*(1-alpha)
a1 = 0.5
a2 = 0.5*alpha
window = a0 - a1*np.cos(2 * np.pi * np.arange(size) / (size - 1)) + a2*np.cos(4 * np.pi * np.arange(size) / (size - 1))
elif window=='BlackmanHarris':
# Blackman-Harris
a0 = 0.358375
a1 = 0.48829
a2 = 0.14128
a3 = 0.01168
window = a0 - a1*np.cos(2 * np.pi * np.arange(size) / (size - 1)) + a2*np.cos(4 * np.pi * np.arange(size) / (size - 1)) - a3*np.cos(6 * np.pi * np.arange(size) / (size - 1))
elif window=='Ones':
window = np.ones(size)
else:
print("Unknown window, using Hann")
window = 0.5 * (1 - np.cos(2 * np.pi * np.arange(size) / (size - 1)))
est_start = int(size // 2) - 1
est_end = est_start + size
for i in range(sg.shape[0]):
wave_start = int(incr * i)
wave_end = wave_start + size
if set_zero_phase:
spectral_slice = sg[i].real + 0j
else:
# already complex
spectral_slice = sg[i]
wave_est = np.real(fft.ifft(spectral_slice))[::-1]
if calculate_offset and i > 0:
offset_size = size - incr
if offset_size <= 0:
#print("WARNING: Large step size >50\% detected! " "This code works best with high overlap - try " "with 75% or greater")
offset_size = incr
offset = self.xcorr_offset(wave[wave_start:wave_start + offset_size], wave_est[est_start:est_start + offset_size])
else:
offset = 0
wave[wave_start:wave_end] += window * wave_est[est_start - offset:est_end - offset]
total_windowing_sum[wave_start:wave_end] += window**2 #Virginia: needed square
wave = np.real(wave) / (total_windowing_sum + 1E-6)
return wave
def xcorr_offset(self,x1, x2):
x1 = x1 - x1.mean()
x2 = x2 - x2.mean()
frame_size = len(x2)
half = frame_size // 2
corrs = np.convolve(x1.astype('float32'), x2[::-1].astype('float32'))
corrs[:half] = -1E30
corrs[-half:] = -1E30
return corrs.argmax() - len(x1)
def medianFilter(self,data=None,width=11):
# Median Filtering
# Uses smaller width windows at edges to remove edge effects
# TODO: Use abs rather than pure median?
if data is None:
data = self.data
mData = np.zeros(len(data))
for i in range(width,len(data)-width):
mData[i] = np.median(data[i-width:i+width])
for i in range(len(data)):
wid = min(i,len(data)-i,width)
mData[i] = np.median(data[i - wid:i + wid])
return mData
# Could be either features of signal processing things. Anyway, they are here -- spectral derivatives and extensions
def wiener_entropy(self,sg):
return np.sum(np.log(sg),1)/np.shape(sg)[1] - np.log(np.sum(sg,1)/np.shape(sg)[1])
def mean_frequency(self,sampleRate,timederiv,freqderiv):
freqs = sampleRate//2 / np.shape(timederiv)[1] * (np.arange(np.shape(timederiv)[1])+1)
mfd = np.sum(timederiv**2 + freqderiv**2,axis=1)
mfd = np.where(mfd==0,1,mfd)
mf = np.sum(freqs * (timederiv**2 + freqderiv**2),axis=1)/mfd
return freqs,mf
def goodness_of_pitch(self,spectral_deriv,sg):
return np.max(np.abs(fft.fft(spectral_deriv/sg, axis=0)),axis=0)
def spectral_derivative(self, window_width, incr, K=2, threshold=0.5, returnAll=False):
""" Compute the spectral derivative """
if self.data is None or len(self.data)==0:
print("ERROR: attempted to calculate spectrogram without audiodata")
return
if not specExtra:
print("Option not available")
return
# Compute the set of multi-tapered spectrograms
starts = range(0, len(self.data) - window_width, incr)
[tapers, eigen] = dpss(window_width, 2.5, K)
sg = np.zeros((len(starts), window_width, K), dtype=complex)
for k in range(K):
for i in starts:
sg[i // incr, :, k] = tapers[:, k] * self.data[i:i + window_width]
sg[:, :, k] = fft.fft(sg[:, :, k])
sg = sg[:, window_width//2:, :]
# Spectral derivative is the real part of exp(i \phi) \sum_ k s_k conj(s_{k+1}) where s_k is the k-th tapered spectrogram
# and \phi is the direction of maximum change (tan inverse of the ratio of pure time and pure frequency components)
S = np.sum(sg[:, :, :-1]*np.conj(sg[:, :, 1:]), axis=2)
timederiv = np.real(S)
freqderiv = np.imag(S)
# Frequency modulation is the angle $\pi/2 - direction of max change$
mfd = np.max(freqderiv**2, axis=0)
mfd = np.where(mfd==0,1,mfd)
fm = np.arctan(np.max(timederiv**2, axis=0) / mfd)
spectral_deriv = -timederiv*np.sin(fm) + freqderiv*np.cos(fm)
sg = np.sum(np.real(sg*np.conj(sg)), axis=2)
sg /= np.max(sg)
# Suppress the noise (spectral continuity)
# Compute the zero crossings of the spectral derivative in all directions
# Pixel is a contour pixel if it is at a zero crossing and both neighbouring pixels in that direction are > threshold
sdt = spectral_deriv * np.roll(spectral_deriv, 1, 0)
sdf = spectral_deriv * np.roll(spectral_deriv, 1, 1)
sdtf = spectral_deriv * np.roll(spectral_deriv, 1, (0, 1))
sdft = spectral_deriv * np.roll(spectral_deriv, (1, -1), (0, 1))
indt, indf = np.where(((sdt < 0) | (sdf < 0) | (sdtf < 0) | (sdft < 0)) & (spectral_deriv < 0))
# Noise reduction using a threshold
we = np.abs(self.wiener_entropy(sg))
freqs, mf = self.mean_frequency(self.sampleRate, timederiv, freqderiv)
# Given a time and frequency bin
contours = np.zeros(np.shape(spectral_deriv))
for i in range(len(indf)):
f = indf[i]
t = indt[i]
if (t > 0) & (t < (np.shape(sg)[0]-1)) & (f > 0) & (f < (np.shape(sg)[1]-1)):
thr = threshold*we[t]/np.abs(freqs[f] - mf[t])
if (sdt[t, f] < 0) & (sg[t-1, f] > thr) & (sg[t+1, f] > thr):
contours[t, f] = 1
if (sdf[t, f] < 0) & (sg[t, f-1] > thr) & (sg[t, f+1] > thr):
contours[t, f] = 1
if (sdtf[t, f] < 0) & (sg[t-1, f-1] > thr) & (sg[t+1, f+1] > thr):
contours[t, f] = 1
if (sdft[t, f] < 0) & (sg[t-1, f+1] > thr) & (sg[t-1, f+1] > thr):
contours[t, f] = 1
if returnAll:
return spectral_deriv, sg, fm, we, mf, np.fliplr(contours)
else:
return np.fliplr(contours)
def drawSpectralDeriv(self):
# helper function to parse output for plotting spectral derivs.
sd = self.spectral_derivative(self.window_width, self.incr, 2, 5.0)
x, y = np.where(sd > 0)
#print(y)
# remove points beyond frq range to show
y1 = [i * self.sampleRate//2/np.shape(self.sg)[1] for i in y]
y1 = np.asarray(y1)
valminfrq = self.minFreqShow/(self.sampleRate//2/np.shape(self.sg)[1])
inds = np.where((y1 >= self.minFreqShow) & (y1 <= self.maxFreqShow))
x = x[inds]
y = y[inds]
y = [i - valminfrq for i in y]
return x, y
def drawFundFreq(self, seg):
""" Produces marks of fundamental freq to be drawn on the spectrogram.
Return is a list of (x, y) segments w/ x,y - lists in spec coords
"""
import Shapes
# Estimate fund freq, using windows of 2 spec FFT lengths (4 columns)
# to make life easier:
Wsamples = 4*self.incr
# No set minfreq cutoff here, but warn of the lower limit for
# reliable estimation (i.e max period such that 3 periods
# fit in the F0 window):
minReliableFreq = self.sampleRate / (Wsamples/3)
print("Warning: F0 estimation below %d Hz will be unreliable" % minReliableFreq)
# returns pitch in Hz for each window of Wsamples/2
# over the entire data provided (so full page here)
thr = 0.5