forked from quantinfo/ng-rc-paper-code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLorenzConstLinQuadraticNVARtimedelayNRMSE-RK23.py
251 lines (204 loc) · 9.24 KB
/
LorenzConstLinQuadraticNVARtimedelayNRMSE-RK23.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# -*- coding: utf-8 -*-
"""
Created on Sat Feb 20 13:17:10 2021
NVAR with time delays for Lorenz forecasting, NRMSE and fixed points.
Don't be efficient for now.
May 18: fixed nrmse calculation, error of fixed points
@author: Dan
"""
import numpy as np
from scipy.integrate import solve_ivp
from scipy.optimize import fsolve
##
## Parameters
##
# number of NRMSE trials
npts=10
# how far in to Lorenz solution to start
start=5.
# units of time to train for
traintime=10.
# ridge parameter for regression
ridge_param = 2.5e-6
# create a vector of warmup times to use, dividing space into
# npts segments of length traintime
warmup_v=np.arange(start,traintime*npts+start,traintime)
# storage for results
train_nrmse_v=np.zeros(npts)
test_nrmse_v=np.zeros(npts)
n_fp1_diff_v=np.zeros(npts)
n_fp2_diff_v=np.zeros(npts)
n_fp0_diff_v=np.zeros(npts)
p_fp1_norm_v=np.zeros((npts, 3))
p_fp2_norm_v=np.zeros((npts, 3))
p_fp0_norm_v=np.zeros((npts, 3))
# run a trial with the given warmup time
def find_err(warmup):
##
## More Parameters
##
# time step
dt=0.025
# Lyapunov time of the Lorenz system
lyaptime=1.104
# units of time to test for
testtime=lyaptime
# total time to run for
maxtime = warmup+traintime+testtime
# discrete-time versions of the times defined above
warmup_pts=round(warmup/dt)
traintime_pts=round(traintime/dt)
warmtrain_pts=warmup_pts+traintime_pts
testtime_pts=round(testtime/dt)
maxtime_pts=round(maxtime/dt)
lyaptime_pts=round(lyaptime/dt)
# input dimension
d = 3
# number of time delay taps
k = 2
# size of the linear part of the feature vector
dlin = k*d
# size of nonlinear part of feature vector
dnonlin = int(dlin*(dlin+1)/2)
# total size of feature vector: constant + linear + nonlinear
dtot = 1 + dlin + dnonlin
# t values for whole evaluation time
# (need maxtime_pts + 1 to ensure a step of dt)
t_eval=np.linspace(0,maxtime,maxtime_pts+1)
##
## Lorenz '63
##
sigma = 10
beta = 8 / 3
rho = 28
def lorenz(t, y):
dy0 = sigma * (y[1] - y[0])
dy1 = y[0] * (rho - y[2]) - y[1]
dy2 = y[0] * y[1] - beta * y[2]
# since lorenz is 3-dimensional, dy/dt should be an array of 3 values
return [dy0, dy1, dy2]
# I integrated out to t=50 to find points on the attractor, then use these as the initial conditions
lorenz_soln = solve_ivp(lorenz, (0, maxtime), [17.67715816276679, 12.931379185960404, 43.91404334248268] , t_eval=t_eval, method='RK23')
# calculate mean, min, and max for all three components of Lorenz solution
lorenz_stats=np.zeros((3,3))
for i in range(3):
lorenz_stats[0,i]=np.mean(lorenz_soln.y[i,warmtrain_pts:maxtime_pts])
lorenz_stats[1,i]=np.min(lorenz_soln.y[i,warmtrain_pts:maxtime_pts])
lorenz_stats[2,i]=np.max(lorenz_soln.y[i,warmtrain_pts:maxtime_pts])
# total variance of the Lorenz solution, corrected July 15, 2021, DJG
total_var=np.var(lorenz_soln.y[0,:])+np.var(lorenz_soln.y[1,:])+np.var(lorenz_soln.y[2,:])
##
## NVAR
##
# create an array to hold the linear part of the feature vector
x = np.zeros((dlin,maxtime_pts))
# fill in the linear part of the feature vector for all times
for delay in range(k):
for j in range(delay,maxtime_pts):
x[d*delay:d*(delay+1),j]=lorenz_soln.y[:,j-delay]
# create an array to hold the full feature vector for training time
# (use ones so the constant term is already 1)
out_train = np.ones((dtot,traintime_pts))
# copy over the linear part (shift over by one to account for constant)
out_train[1:dlin+1,:]=x[:,warmup_pts-1:warmtrain_pts-1]
# fill in the non-linear part
cnt=0
for row in range(dlin):
for column in range(row,dlin):
# shift by one for constant
out_train[dlin+1+cnt]=x[row,warmup_pts-1:warmtrain_pts-1]*x[column,warmup_pts-1:warmtrain_pts-1]
cnt += 1
# ridge regression: train W_out to map out_train to Lorenz[t] - Lorenz[t - 1]
W_out = (x[0:d,warmup_pts:warmtrain_pts]-x[0:d,warmup_pts-1:warmtrain_pts-1]) @ out_train[:,:].T @ np.linalg.pinv(out_train[:,:] @ out_train[:,:].T + ridge_param*np.identity(dtot))
# apply W_out to the training feature vector to get the training output
x_predict = x[0:d,warmup_pts-1:warmtrain_pts-1] + W_out @ out_train[:,0:traintime_pts]
# calculate NRMSE between true Lorenz and training output
train_nrmse = np.sqrt(np.mean((x[0:d,warmup_pts:warmtrain_pts]-x_predict[:,:])**2)/total_var)
# create a place to store feature vectors for prediction
out_test = np.ones(dtot) # full feature vector
x_test = np.zeros((dlin,testtime_pts)) # linear part
# copy over initial linear feature vector
x_test[:,0] = x[:,warmtrain_pts-1]
# do prediction
for j in range(testtime_pts-1):
# copy linear part into whole feature vector
out_test[1:dlin+1]=x_test[:,j] # shift by one for constant
# fill in the non-linear part
cnt=0
for row in range(dlin):
for column in range(row,dlin):
# shift by one for constant
out_test[dlin+1+cnt]=x_test[row,j]*x_test[column,j]
cnt += 1
# fill in the delay taps of the next state
x_test[d:dlin,j+1] = x_test[0:(dlin-d),j]
# do a prediction
x_test[0:d,j+1] = x_test[0:d,j] + W_out @ out_test[:]
# calculate NRMSE between true Lorenz and prediction for one Lyapunov time
test_nrmse = np.sqrt(np.mean((x[0:d,warmtrain_pts-1:warmtrain_pts+lyaptime_pts-1]-x_test[0:d,0:lyaptime_pts])**2)/total_var)
# setup variables for predicted and true fixed points
t_fp0=np.zeros(d)
t_fp1=np.zeros(d)
t_fp2=np.zeros(d)
# true fixed point 0 is 0
# true fixed point 1 is at...
t_fp1[0]=np.sqrt(beta*(rho-1))
t_fp1[1]=np.sqrt(beta*(rho-1))
t_fp1[2]=rho-1
# true fixed point 2 is at...
t_fp2[0]=-t_fp1[0]
t_fp2[1]=-t_fp1[1]
t_fp2[2]=t_fp1[2]
# this function does a single step NVAR prediction for a trial fixed point
# and returns the difference between the input and prediction
# we can then solve func(p_fp) == 0 to find a fixed point p_fp
def func(p_fp):
# create a trial input feature vector
out_vec=np.ones(dtot)
# fill in the linear part
for ii in range(k):
# all past input is p_fp
out_vec[1+ii*d:1+(ii+1)*d]=p_fp[0:d]
# fill in the nonlinear part of the feature vector
cnt=0
for row in range(dlin):
for column in range(row,dlin):
out_vec[dlin+1+cnt]=out_vec[1+row]*out_vec[1+column]
cnt += 1
return W_out @ out_vec
# solve for the first fixed point and calculate distances
p_fp1 = fsolve(func, t_fp1)
n_fp1_diff=np.sqrt(np.sum((t_fp1-p_fp1)**2)/total_var)
p_fp1_norm = (t_fp1 - p_fp1) / np.sqrt(total_var)
# solve for second fixed point
p_fp2 = fsolve(func, t_fp2)
n_fp2_diff=np.sqrt(np.sum((t_fp2-p_fp2)**2)/total_var)
p_fp2_norm = (t_fp2 - p_fp2) / np.sqrt(total_var)
# solve for 0 fixed point
p_fp0=fsolve(func, t_fp0)
n_fp0_diff=np.sqrt(np.sum((t_fp0-p_fp0)**2)/total_var)
p_fp0_norm = (t_fp0 - p_fp0) / np.sqrt(total_var)
# return our findings
return train_nrmse,test_nrmse,n_fp1_diff,n_fp2_diff,n_fp0_diff,p_fp1_norm,p_fp2_norm,p_fp0_norm
# run many trials and collect the results
for i in range(npts):
train_nrmse_v[i],test_nrmse_v[i],n_fp1_diff_v[i],n_fp2_diff_v[i],n_fp0_diff_v[i],p_fp1_norm_v[i],p_fp2_norm_v[i],p_fp0_norm_v[i]=find_err(warmup_v[i])
# output summaries
print('\n ridge regression parameter: '+str(ridge_param)+'\n')
print('mean, meanerr, train nrmse: '+str(np.mean(train_nrmse_v))+' '+str(np.std(train_nrmse_v)/np.sqrt(npts)))
print('mean, meanerr, test nrmse: '+str(np.mean(test_nrmse_v))+' '+str(np.std(test_nrmse_v)/np.sqrt(npts)))
# mean / err of (normalized L2 distance from true to predicted fixed point)
print()
print('mean, meanerr, fp1 nL2 distance: '+str(np.mean(n_fp1_diff_v))+' '+str(np.std(n_fp1_diff_v)/np.sqrt(npts)))
print('mean, meanerr, fp2 nL2 distance: '+str(np.mean(n_fp2_diff_v))+' '+str(np.std(n_fp2_diff_v)/np.sqrt(npts)))
print('mean, meanerr, fp0 nL2 distance: '+str(np.mean(n_fp0_diff_v))+' '+str(np.std(n_fp0_diff_v)/np.sqrt(npts)))
# mean / err of (normalized difference between true and predicted fixed point)
print()
print('mean, meanerr, fp1', np.mean(p_fp1_norm_v, axis=0), np.std(p_fp1_norm_v, axis=0) / np.sqrt(npts))
print('mean, meanerr, fp2', np.mean(p_fp2_norm_v, axis=0), np.std(p_fp2_norm_v, axis=0) / np.sqrt(npts))
print('mean, meanerr, fp0', np.mean(p_fp0_norm_v, axis=0), np.std(p_fp0_norm_v, axis=0) / np.sqrt(npts))
# normalized L2 distance between true and (mean of predicted fixed point)
print()
print('nL2 distance to mean, meanerr, fp1', np.sqrt(np.sum(np.mean(p_fp1_norm_v, axis=0) ** 2)), np.sqrt(np.sum(np.var(p_fp1_norm_v, axis=0)) / npts))
print('nL2 distance to mean, meanerr, fp2', np.sqrt(np.sum(np.mean(p_fp2_norm_v, axis=0) ** 2)), np.sqrt(np.sum(np.var(p_fp2_norm_v, axis=0)) / npts))
print('nL2 distance to mean, meanerr, fp0', np.sqrt(np.sum(np.mean(p_fp0_norm_v, axis=0) ** 2)), np.sqrt(np.sum(np.var(p_fp0_norm_v, axis=0)) / npts))