forked from quantinfo/ng-rc-paper-code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
LorenzConstLinQuadraticNVAR-Noise.py
284 lines (231 loc) · 9.74 KB
/
LorenzConstLinQuadraticNVAR-Noise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# -*- coding: utf-8 -*-
"""
Created on Sat Feb 20 13:17:10 2021
NVAR with time delays for Lorenz forecasting. Don't be efficient for now.
@author: Dan
"""
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp
from scipy.interpolate import interp1d
from numpy.random import default_rng
#from random import random.seed,gauss
##
## Parameters
##
# time step
dt=0.025
# units of time to warm up NVAR. need to have warmup_pts >= 1
warmup = 5.
# units of time to train for
traintime = 10.
# units of time to test for
testtime=120.
# total time to run for
maxtime = warmup+traintime+testtime
# how much of testtime to plot
plottime=20.
# Lyapunov time of the Lorenz system
lyaptime=1.104
# discrete-time versions of the times defined above
warmup_pts=round(warmup/dt)
traintime_pts=round(traintime/dt)
warmtrain_pts=warmup_pts+traintime_pts
testtime_pts=round(testtime/dt)
maxtime_pts=round(maxtime/dt)
plottime_pts=round(plottime/dt)
lyaptime_pts=round(lyaptime/dt)
# input dimension
d = 3
# number of time delay taps
k = 2
# size of linear part of feature vector
dlin = k*d
# size of nonlinear part of feature vector
dnonlin = int(dlin*(dlin+1)/2)
# total size of feature vector: constant + linear + nonlinear
dtot = 1 + dlin + dnonlin
# ridge parameter for regression
ridge_param = 1.4e-2
# t values for whole evaluation time
# (need maxtime_pts + 1 to ensure a step of dt)
t_eval=np.linspace(0,maxtime,maxtime_pts+1)
# generate Gaussian random numbers at step dt and then interpolate for integrator
rng = np.random.default_rng(seed=1)
# width of the Gaussian distribution
width=1.
xran=rng.normal(0.,width,maxtime_pts+1)
yran=rng.normal(0.,width,maxtime_pts+1)
zran=rng.normal(0.,width,maxtime_pts+1)
xran_i = interp1d(t_eval,xran)
yran_i = interp1d(t_eval,yran)
zran_i = interp1d(t_eval,zran)
lorenz_soln_nf=np.zeros((d,maxtime_pts+1))
##
## Lorenz '63
##
sigma = 10
beta = 8 / 3
rho = 28
def lorenz(t, y):
dy0 = sigma * (y[1] - y[0]) + xran_i(t)
dy1 = y[0] * (rho - y[2]) - y[1] + yran_i(t)
dy2 = y[0] * y[1] - beta * y[2] + zran_i(t)
# since lorenz is 3-dimensional, dy/dt should be an array of 3 values
return [dy0, dy1, dy2]
# No noise derivative
def lorenz_nn(t, y):
dy0 = sigma * (y[1] - y[0])
dy1 = y[0] * (rho - y[2]) - y[1]
dy2 = y[0] * y[1] - beta * y[2]
# since lorenz is 3-dimensional, dy/dt should be an array of 3 values
return [dy0, dy1, dy2]
# I integrated out to t=50 to find points on the attractor, then use these as the initial conditions
lorenz_soln = solve_ivp(lorenz, (0, maxtime), [17.67715816276679, 12.931379185960404, 43.91404334248268] , t_eval=t_eval, method='RK23')
# total variance of Lorenz solution
total_var=np.var(lorenz_soln.y[0,:])+np.var(lorenz_soln.y[1,:])+np.var(lorenz_soln.y[2,:])
print('standard deviation for x,y,z: '+str(np.std(lorenz_soln.y[0,:]))+' '+str(np.std(lorenz_soln.y[1,:]))+' '+str(np.std(lorenz_soln.y[2,:])))
##
## NVAR
##
# create an array to hold the linear part of the feature vector
x = np.zeros((dlin,maxtime_pts))
# fill in the linear part of the feature vector for all times
for delay in range(k):
for j in range(delay,maxtime_pts):
x[d*delay:d*(delay+1),j]=lorenz_soln.y[:,j-delay]
# create an array to hold the full feature vector for training time
# (use ones so the constant term is already 1)
out_train = np.ones((dtot,traintime_pts))
# copy over the linear part (shift over by one to account for constant)
out_train[1:dlin+1,:]=x[:,warmup_pts-1:warmtrain_pts-1]
# fill in the non-linear part
cnt=0
for row in range(dlin):
for column in range(row,dlin):
# shift by one for constant
out_train[dlin+1+cnt]=x[row,warmup_pts-1:warmtrain_pts-1]*x[column,warmup_pts-1:warmtrain_pts-1]
cnt += 1
# ridge regression: train W_out to map out_train to Lorenz[t] - Lorenz[t - 1]
W_out = (x[0:d,warmup_pts:warmtrain_pts]-x[0:d,warmup_pts-1:warmtrain_pts-1]) @ out_train[:,:].T @ np.linalg.pinv(out_train[:,:] @ out_train[:,:].T + ridge_param*np.identity(dtot))
# apply W_out to the training feature vector to get the training output
x_predict = x[0:d,warmup_pts-1:warmtrain_pts-1] + W_out @ out_train[:,0:traintime_pts]
# calculate NRMSE between true Lorenz and training output
rms = np.sqrt(np.mean((x[0:d,warmup_pts:warmtrain_pts]-x_predict[:,:])**2)/total_var)
print('training nrmse: '+str(rms))
# create a place to store feature vectors for prediction
out_test = np.zeros(dtot) # full feature vector
x_test = np.zeros((dlin,testtime_pts)) # linear part
# copy over initial linear feature vector
x_test[:,0] = x[:,warmtrain_pts-1]
# do prediction
for j in range(testtime_pts-1):
# copy linear part into whole feature vector
out_test[1:dlin+1]=x_test[:,j] # shift by one for constant
# fill in the non-linear part
cnt=0
for row in range(dlin):
for column in range(row,dlin):
# shift by one for constant
out_test[dlin+1+cnt]=x_test[row,j]*x_test[column,j]
cnt += 1
# fill in the delay taps of the next state
x_test[d:dlin,j+1]=x_test[0:(dlin-d),j]
# do a prediction
x_test[0:d,j+1] = x_test[0:d,j]+W_out @ out_test[:]
# no noise solution
t_eval_nn=np.linspace(0,testtime,testtime_pts+1)
lorenz_soln_nn = solve_ivp(lorenz, (0,testtime), x_test[0:d,0] , t_eval=t_eval_nn, method='RK23')
# calculate NRMSE between true Lorenz and prediction for one Lyapunov time
total_var_nn=np.var(lorenz_soln_nn.y[0,:])+np.var(lorenz_soln_nn.y[1,:])+np.var(lorenz_soln_nn.y[2,:])
test_nrmse = np.sqrt(np.mean((lorenz_soln_nn.y[0:d,0:lyaptime_pts]-x_test[0:d,0:lyaptime_pts])**2)/total_var_nn)
print('test nrmse: '+str(test_nrmse))
##
## Plot
##
t_linewidth=1.1
a_linewidth=0.3
plt.rcParams.update({'font.size': 12})
fig1 = plt.figure()
fig1.set_figheight(8)
fig1.set_figwidth(12)
xlabel=[10,15,20,25,30,35,40]
h=120
w=100
# top left of grid is 0,0
axs1 = plt.subplot2grid(shape=(h,w), loc=(0, 9), colspan=22, rowspan=38)
axs2 = plt.subplot2grid(shape=(h,w), loc=(52, 0), colspan=42, rowspan=20)
axs3 = plt.subplot2grid(shape=(h,w), loc=(75, 0), colspan=42, rowspan=20)
axs4 = plt.subplot2grid(shape=(h,w), loc=(98, 0), colspan=42, rowspan=20)
axs5 = plt.subplot2grid(shape=(h,w), loc=(0, 61), colspan=22, rowspan=38)
axs6 = plt.subplot2grid(shape=(h,w), loc=(52, 50),colspan=42, rowspan=20)
axs7 = plt.subplot2grid(shape=(h,w), loc=(75, 50), colspan=42, rowspan=20)
axs8 = plt.subplot2grid(shape=(h,w), loc=(98, 50), colspan=42, rowspan=20)
# true NOISY Lorenz attractor
axs1.plot(x[0,warmtrain_pts:maxtime_pts],x[2,warmtrain_pts:maxtime_pts],linewidth=a_linewidth)
axs1.set_xlabel('x')
axs1.set_ylabel('z')
axs1.set_title('noise-driven ground truth')
axs1.text(-.25,.92,'a)', ha='left', va='bottom',transform=axs1.transAxes)
axs1.axes.set_xbound(-21,21)
axs1.axes.set_ybound(2,48)
# training phase x
axs2.set_title('noise-drive training phase')
axs2.plot(t_eval[warmup_pts:warmtrain_pts]-warmup,x[0,warmup_pts:warmtrain_pts],linewidth=t_linewidth)
axs2.plot(t_eval[warmup_pts:warmtrain_pts]-warmup,x_predict[0,:],linewidth=t_linewidth, color='r')
axs2.set_ylabel('x')
axs2.text(-.155,0.87,'b)', ha='left', va='bottom',transform=axs2.transAxes)
axs2.axes.xaxis.set_ticklabels([])
axs2.axes.set_ybound(-21.,21.)
axs2.axes.set_xbound(-.15,10.15)
# training phase y
axs3.plot(t_eval[warmup_pts:warmtrain_pts]-warmup,x[1,warmup_pts:warmtrain_pts],linewidth=t_linewidth)
axs3.plot(t_eval[warmup_pts:warmtrain_pts]-warmup,x_predict[1,:],linewidth=t_linewidth,color='r')
axs3.set_ylabel('y')
axs3.text(-.155,0.87,'c)', ha='left', va='bottom',transform=axs3.transAxes)
axs3.axes.xaxis.set_ticklabels([])
axs3.axes.set_xbound(-.15,10.15)
# training phase z
axs4.plot(t_eval[warmup_pts:warmtrain_pts]-warmup,x[2,warmup_pts:warmtrain_pts],linewidth=t_linewidth)
axs4.plot(t_eval[warmup_pts:warmtrain_pts]-warmup,x_predict[2,:],linewidth=t_linewidth,color='r')
axs4.set_ylabel('z')
axs4.text(-.155,0.87,'d)', ha='left', va='bottom',transform=axs4.transAxes)
axs4.set_xlabel('time')
axs4.axes.set_xbound(-.15,10.15)
# prediction attractor
axs5.plot(x_test[0,:],x_test[2,:],linewidth=a_linewidth,color='r')
axs5.set_xlabel('x')
axs5.set_ylabel('z')
axs5.set_title('NG-RC prediction')
axs5.text(-.25,0.92,'e)', ha='left', va='bottom',transform=axs5.transAxes)
axs5.axes.set_xbound(-21,21)
axs5.axes.set_ybound(2,48)
# testing phase x
axs6.set_title('noise-free testing phase')
axs6.set_xticks(xlabel)
axs6.plot(t_eval[warmtrain_pts-1:warmtrain_pts+plottime_pts-1]-warmup,lorenz_soln_nn.y[0,0:plottime_pts],linewidth=t_linewidth)
axs6.plot(t_eval[warmtrain_pts-1:warmtrain_pts+plottime_pts-1]-warmup,x_test[0,0:plottime_pts],linewidth=t_linewidth,color='r')
axs6.set_ylabel('x')
axs6.text(-.155,0.87,'f)', ha='left', va='bottom',transform=axs6.transAxes)
axs6.axes.xaxis.set_ticklabels([])
axs6.axes.set_xbound(9.7,30.3)
# testing phase y
axs7.set_xticks(xlabel)
axs7.plot(t_eval[warmtrain_pts-1:warmtrain_pts+plottime_pts-1]-warmup,lorenz_soln_nn.y[1,0:plottime_pts],linewidth=t_linewidth)
axs7.plot(t_eval[warmtrain_pts-1:warmtrain_pts+plottime_pts-1]-warmup,x_test[1,0:plottime_pts],linewidth=t_linewidth,color='r')
axs7.set_ylabel('y')
axs7.text(-.155,0.87,'g)', ha='left', va='bottom',transform=axs7.transAxes)
axs7.axes.xaxis.set_ticklabels([])
axs7.axes.set_xbound(9.7,30.3)
# testing phase z
axs8.set_xticks(xlabel)
axs8.plot(t_eval[warmtrain_pts-1:warmtrain_pts+plottime_pts-1]-warmup,lorenz_soln_nn.y[2,0:plottime_pts],linewidth=t_linewidth)
axs8.plot(t_eval[warmtrain_pts-1:warmtrain_pts+plottime_pts-1]-warmup,x_test[2,0:plottime_pts],linewidth=t_linewidth,color='r')
axs8.set_ylabel('z')
axs8.text(-.155,0.87,'h)', ha='left', va='bottom',transform=axs8.transAxes)
axs8.set_xlabel('time')
axs8.axes.set_xbound(9.7,30.3)
plt.savefig('predict-lorenz-noisy.png')
plt.savefig('predict-lorenz-noisy.svg')
plt.savefig('predict-lorenz-noisy.eps')
plt.savefig('predict-lorenz-noisy.pdf')