forked from quantinfo/ng-rc-paper-code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DoubleScrollNVAR-RK23.py
369 lines (312 loc) · 14 KB
/
DoubleScrollNVAR-RK23.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# -*- coding: utf-8 -*-
"""
Created on Sat Feb 20 13:17:10 2021
NVAR with time delays for double-scroll forecasting, NRMSE, and fixed points.
Don't be efficient for now.
Notes: for a polynomial of size d raised to power n, there are
(d+n-1)!/(d-1)!n! terms. For n=2, we have d(d+1)/2 terms. For n=3,
we have d(d+1)(d+2)/6 terms.
@author: Dan
"""
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp
from scipy.optimize import fsolve
# do one trial of the NVAR, with the given warmup time
def do_nvar(warmup=1.):
##
## Parameters
##
# time step
dt=0.25
# units of time to train for
traintime=100.
# units of time to test for
testtime=800.
# Lyapunov time of double-scroll system
lyaptime=7.8125 # Henry Abarbanel finds Lyapunov exponent is 0.128
# total time to run for
maxtime = warmup+traintime+testtime
# discrete-time versions of the times defined above
warmup_pts=round(warmup/dt)
traintime_pts=round(traintime/dt)
warmtrain_pts=warmup_pts+traintime_pts
testtime_pts=round(testtime/dt)
maxtime_pts=round(maxtime/dt)
lyaptime_pts=round(lyaptime/dt)
# input dimension
d = 3
# number of time delay taps
k = 2
# size of the linear part of the feature vector
dlin = k*d
# size of the nonlinear part of feature vector
dnonlin = int(dlin*(dlin+1)*(dlin+2)/6)
# total size of feature vector: linear + nonlinear
dtot = dlin + dnonlin
# ridge parameter for regression
ridge_param = 1.e-3
# t values for whole evaluation time
# (need maxtime_pts + 1 to ensure a step of dt)
t_eval=np.linspace(0,maxtime,maxtime_pts+1)
##
## Double scroll
##
r1 = 1.2
r2 = 3.44
r4 = 0.193
alpha = 11.6
ir = 2*2.25e-5 # the 2 is for the hyperbolic sine
def doublescroll(t, y):
# y[0] = V1, y[1] = V2, y[2] = I
dV = y[0]-y[1] # V1-V2
g = (dV/r2)+ir*np.sinh(alpha*dV)
dy0 = (y[0]/r1)-g
dy1 = g-y[2]
dy2 = y[1]-r4*y[2]
return [dy0, dy1, dy2]
# I integrated out to t=50 to find points on the attractor, then use these as the initial conditions
doublescroll_soln = solve_ivp(doublescroll, (0, maxtime), [0.37926545,0.058339,-0.08167691] , t_eval=t_eval, method='RK23')
# total variance of the double-scroll solution, corrected July 15, 2021 DJG
total_var=np.var(doublescroll_soln.y[0,:])+np.var(doublescroll_soln.y[1,:])+np.var(doublescroll_soln.y[2,:])
##
## NVAR
##
# create an array to hold the linear part of the feature vector
x = np.zeros((dlin,maxtime_pts))
# fill in the linear part of the feature vector for all times
for delay in range(k):
for j in range(delay,maxtime_pts):
x[d*delay:d*(delay+1),j]=doublescroll_soln.y[:,j-delay]
# create an array to hold the full feature vector for training time
out_train = np.zeros((dtot,traintime_pts))
# copy over the linear part
out_train[0:dlin,:]=x[:,warmup_pts-1:warmtrain_pts-1]
# fill in the non-linear part
cnt=0
for row in range(dlin):
for column in range(row,dlin):
for span in range(column,dlin):
out_train[dlin+cnt]=x[row,warmup_pts-1:warmtrain_pts-1]*x[column,warmup_pts-1:warmtrain_pts-1]*x[span,warmup_pts-1:warmtrain_pts-1]
cnt += 1
# ridge regression: train W_out to map out_train to DScroll[t] - DScroll[t - 1]
W_out = (x[0:d,warmup_pts:warmtrain_pts]-x[0:d,warmup_pts-1:warmtrain_pts-1]) @ out_train[:,:].T @ np.linalg.pinv(out_train[:,:] @ out_train[:,:].T + ridge_param*np.identity(dtot))
# apply W_out to the training feature vector to get the training output
x_predict = x[0:d,warmup_pts-1:warmtrain_pts-1] + W_out @ out_train[:,0:traintime_pts]
# calculate NRMSE between true double scroll and training output
train_nrmse = np.sqrt(np.mean((x[0:d,warmup_pts:warmtrain_pts]-x_predict[:,:])**2)/total_var)
# create a place to store feature vectors for prediction
out_test = np.zeros(dtot) # full feature vector
x_test = np.zeros((dlin,testtime_pts)) # linear part
# copy over initial linear feature vector
x_test[:,0] = x[:,warmtrain_pts-1]
# do prediction
for j in range(testtime_pts-1):
# copy linear part into whole feature vector
out_test[0:dlin]=x_test[:,j]
# fill in the non-linear part
cnt=0
for row in range(dlin):
for column in range(row,dlin):
for span in range(column,dlin):
out_test[dlin+cnt]=x_test[row,j]*x_test[column,j]*x_test[span,j]
cnt += 1
# fill in the delay taps of the next state
x_test[d:dlin,j+1]=x_test[0:(dlin-d),j]
# do a prediction
x_test[0:d,j+1] = x_test[0:d,j]+W_out @ out_test[:]
# calculate NRMSE between true double scroll and prediction for one Lyapunov time
nrmse = np.sqrt(np.mean((x[0:d,warmtrain_pts-1:warmtrain_pts+lyaptime_pts-1]-x_test[0:d,0:lyaptime_pts])**2)/total_var)
# solve the transcendental equation that determines where the
# true fixed points are located
fp_slope = (r1 / r2) - (r4 / r2) - 1
fp_sinhx = alpha * (1 - r4 / r1)
fp_sinhy = r1 * ir
fp_xs = np.linspace(-1.4, 1.4, 50)
V1_fp = fsolve(lambda V1: fp_slope * V1 + fp_sinhy * np.sinh(fp_sinhx * V1), 1.05)
# setup variabled for predicted and true fixed points
t_fp0=np.zeros(d)
t_fp1=np.zeros(d)
t_fp2=np.zeros(d)
# true fixed point 0 is 0
# true fixed point 1 is at...
t_fp1[0]=V1_fp
t_fp1[1]=r4 * V1_fp / r1
t_fp1[2]=V1_fp / r1
# true fixed point 2 is at...
t_fp2[0]=-t_fp1[0]
t_fp2[1]=-t_fp1[1]
t_fp2[2]=-t_fp1[2]
# this function does a single step NVAR prediction for a trial fixed point
# and returns the difference between the input and prediction
# we can then solve func(p_fp) == 0 to find a fixed point p_fp
def func(p_fp):
# create a trial input feature vector
out_vec=np.ones(dtot)
# fill in the linear part
for ii in range(k):
# all past input is p_fp
out_vec[ii*d:(ii+1)*d]=p_fp[0:d]
# fill in the nonlinear part of the feature vector
cnt=0
for row in range(dlin):
for column in range(row,dlin):
for span in range(column,dlin):
out_vec[dlin+cnt]=out_vec[row]*out_vec[column]*out_vec[span]
cnt += 1
return W_out @ out_vec
# solve for the first fixed point and calculate distances
p_fp1 = fsolve(func, t_fp1)
n_fp1_diff=np.sqrt(np.sum((t_fp1-p_fp1)**2)/total_var)
p_fp1_norm = (t_fp1 - p_fp1) / np.sqrt(total_var)
# solve for second fixed point
p_fp2 = fsolve(func, t_fp2)
n_fp2_diff=np.sqrt(np.sum((t_fp2-p_fp2)**2)/total_var)
p_fp2_norm = (t_fp2 - p_fp2) / np.sqrt(total_var)
# solve for 0 fixed point
p_fp0=fsolve(func, t_fp0)
n_fp0_diff=np.sqrt(np.sum((t_fp0-p_fp0)**2)/total_var)
p_fp0_norm = (t_fp0 - p_fp0) / np.sqrt(total_var)
# return all our local variables we've defined
return locals()
# plot the prediction, given the local variables from do_nvar
def do_plot(dt, x, warmtrain_pts, maxtime_pts, t_eval, warmup_pts, warmup, x_predict, x_test, **extra):
# amount of time to plot prediction for
plottime=200.
plottime_pts=round(plottime/dt)
t_linewidth=1.1
a_linewidth=0.3
plt.rcParams.update({'font.size': 12})
fig1 = plt.figure()
fig1.set_figheight(8)
fig1.set_figwidth(12)
xlabel=[100,150,200,250,300]
sectionskip = 2
h=120 + sectionskip
w=100
# top left of grid is 0,0
axs1 = plt.subplot2grid(shape=(h,w), loc=(0, 9), colspan=22, rowspan=38)
axs2 = plt.subplot2grid(shape=(h,w), loc=(52+sectionskip, 0), colspan=42, rowspan=20)
axs3 = plt.subplot2grid(shape=(h,w), loc=(75+sectionskip, 0), colspan=42, rowspan=20)
axs4 = plt.subplot2grid(shape=(h,w), loc=(98+sectionskip, 0), colspan=42, rowspan=20)
axs5 = plt.subplot2grid(shape=(h,w), loc=(0, 61), colspan=22, rowspan=38)
axs6 = plt.subplot2grid(shape=(h,w), loc=(52+sectionskip, 50),colspan=42, rowspan=20)
axs7 = plt.subplot2grid(shape=(h,w), loc=(75+sectionskip, 50), colspan=42, rowspan=20)
axs8 = plt.subplot2grid(shape=(h,w), loc=(98+sectionskip, 50), colspan=42, rowspan=20)
# true double scroll attractor
axs1.plot(x[0,warmtrain_pts:maxtime_pts],x[2,warmtrain_pts:maxtime_pts],linewidth=a_linewidth)
axs1.set_xlabel('$V_1$')
axs1.set_ylabel('I')
axs1.set_title('ground truth')
axs1.text(-.25,.92,'a)', ha='left', va='bottom',transform=axs1.transAxes)
axs1.axes.set_xbound(-2.1, 2.1)
axs1.axes.set_ybound(-2.5, 2.5)
# training phase V_1
axs2.set_title('training phase')
axs2.plot(t_eval[warmup_pts:warmtrain_pts]-warmup,x[0,warmup_pts:warmtrain_pts],linewidth=t_linewidth)
axs2.plot(t_eval[warmup_pts:warmtrain_pts]-warmup,x_predict[0,:],linewidth=t_linewidth, color='r')
axs2.set_ylabel('$V_1$')
axs2.text(-.155,0.87,'b)', ha='left', va='bottom',transform=axs2.transAxes)
axs2.axes.xaxis.set_ticklabels([])
axs2.axes.set_xbound(-1.5,101.5)
axs2.axes.set_ybound(-2.1, 2.1)
# training phase V_2
axs3.plot(t_eval[warmup_pts:warmtrain_pts]-warmup,x[1,warmup_pts:warmtrain_pts],linewidth=t_linewidth)
axs3.plot(t_eval[warmup_pts:warmtrain_pts]-warmup,x_predict[1,:],linewidth=t_linewidth,color='r')
axs3.set_ylabel('$V_2$')
axs3.text(-.155,0.87,'c)', ha='left', va='bottom',transform=axs3.transAxes)
axs3.axes.xaxis.set_ticklabels([])
axs3.axes.set_xbound(-1.5,101.5)
axs3.axes.set_ybound(-1.1, 1.1)
# training phase I
axs4.plot(t_eval[warmup_pts:warmtrain_pts]-warmup,x[2,warmup_pts:warmtrain_pts],linewidth=t_linewidth)
axs4.plot(t_eval[warmup_pts:warmtrain_pts]-warmup,x_predict[2,:],linewidth=t_linewidth,color='r')
axs4.set_ylabel('I')
axs4.text(-.155,0.87,'d)', ha='left', va='bottom',transform=axs4.transAxes)
axs4.set_xlabel('time')
axs4.axes.set_xbound(-1.5,101.5)
axs4.axes.set_ybound(-2.5, 2.5)
# prediction attractor
axs5.plot(x_test[0,:],x_test[2,:],linewidth=a_linewidth,color='r')
axs5.set_xlabel('$V_1$')
axs5.set_ylabel('I')
axs5.set_title('NG-RC prediction')
axs5.text(-.25,0.92,'e)', ha='left', va='bottom',transform=axs5.transAxes)
axs5.axes.set_xbound(-2.1, 2.1)
axs5.axes.set_ybound(-2.5, 2.5)
# testing phase V_1
axs6.set_title('testing phase')
axs6.set_xticks(xlabel)
axs6.plot(t_eval[warmtrain_pts-1:warmtrain_pts+plottime_pts-1]-warmup,x[0,warmtrain_pts-1:warmtrain_pts+plottime_pts-1],linewidth=t_linewidth)
axs6.plot(t_eval[warmtrain_pts-1:warmtrain_pts+plottime_pts-1]-warmup,x_test[0,0:plottime_pts],linewidth=t_linewidth,color='r')
axs6.set_ylabel('$V_1$')
axs6.text(-.155,0.87,'f)', ha='left', va='bottom',transform=axs6.transAxes)
axs6.axes.xaxis.set_ticklabels([])
axs6.axes.set_xbound(97,303)
axs6.axes.set_ybound(-2.1, 2.1)
# testing phase V_2
axs7.set_xticks(xlabel)
axs7.plot(t_eval[warmtrain_pts-1:warmtrain_pts+plottime_pts-1]-warmup,x[1,warmtrain_pts-1:warmtrain_pts+plottime_pts-1],linewidth=t_linewidth)
axs7.plot(t_eval[warmtrain_pts-1:warmtrain_pts+plottime_pts-1]-warmup,x_test[1,0:plottime_pts],linewidth=t_linewidth,color='r')
axs7.set_ylabel('$V_2$')
axs7.text(-.155,0.87,'g)', ha='left', va='bottom',transform=axs7.transAxes)
axs7.axes.xaxis.set_ticklabels([])
axs7.axes.set_xbound(97,303)
axs7.axes.set_ybound(-1.1, 1.1)
# testing phase I
axs8.set_xticks(xlabel)
axs8.plot(t_eval[warmtrain_pts-1:warmtrain_pts+plottime_pts-1]-warmup,x[2,warmtrain_pts-1:warmtrain_pts+plottime_pts-1],linewidth=t_linewidth)
axs8.plot(t_eval[warmtrain_pts-1:warmtrain_pts+plottime_pts-1]-warmup,x_test[2,0:plottime_pts],linewidth=t_linewidth,color='r')
axs8.set_ylabel('I')
axs8.text(-.155,0.87,'h)', ha='left', va='bottom',transform=axs8.transAxes)
axs8.set_xlabel('time')
axs8.axes.set_xbound(97,303)
axs8.axes.set_ybound(-2.5, 2.5)
# run one NVAR to plot the forecast
do_plot(**do_nvar())
plt.savefig('predict-dscroll.png')
plt.savefig('predict-dscroll.svg')
plt.savefig('predict-dscroll.eps')
plt.savefig('predict-dscroll.pdf')
# run many NVARs to calculate NRMSE and fixed points
# number of trials
npts=10
# storage for results
train_nrmse_v=np.zeros(npts)
test_nrmse_v=np.zeros(npts)
n_fp1_diff_v=np.zeros(npts)
n_fp2_diff_v=np.zeros(npts)
n_fp0_diff_v=np.zeros(npts)
p_fp1_norm_v=np.zeros((npts, 3))
p_fp2_norm_v=np.zeros((npts, 3))
p_fp0_norm_v=np.zeros((npts, 3))
# run all the trials and collect the results
for i in range(npts):
r = do_nvar(warmup=1. + 100. * i)
train_nrmse_v[i] = r['train_nrmse']
test_nrmse_v[i] = r['nrmse']
n_fp1_diff_v[i] = r['n_fp1_diff']
n_fp2_diff_v[i] = r['n_fp2_diff']
n_fp0_diff_v[i] = r['n_fp0_diff']
p_fp1_norm_v[i] = r['p_fp1_norm']
p_fp2_norm_v[i] = r['p_fp2_norm']
p_fp0_norm_v[i] = r['p_fp0_norm']
#output summaries
print('\n ridge regression parameter: '+str(r['ridge_param'])+'\n')
print('mean, meanerr, train nrmse: '+str(np.mean(train_nrmse_v))+' '+str(np.std(train_nrmse_v)/np.sqrt(npts)))
print('mean, meanerr, test nrmse: '+str(np.mean(test_nrmse_v))+' '+str(np.std(test_nrmse_v)/np.sqrt(npts)))
# mean / err of (normalized L2 distance from true to predicted fixed point)
print()
print('mean, meanerr, fp1 nL2 distance: '+str(np.mean(n_fp1_diff_v))+' '+str(np.std(n_fp1_diff_v)/np.sqrt(npts)))
print('mean, meanerr, fp2 nL2 distance: '+str(np.mean(n_fp2_diff_v))+' '+str(np.std(n_fp2_diff_v)/np.sqrt(npts)))
print('mean, meanerr, fp0 nL2 distance: '+str(np.mean(n_fp0_diff_v))+' '+str(np.std(n_fp0_diff_v)/np.sqrt(npts)))
# mean / err of (normalized difference between true and predicted fixed point)
print()
print('mean, meanerr, fp1', np.mean(p_fp1_norm_v, axis=0), np.std(p_fp1_norm_v, axis=0) / np.sqrt(npts))
print('mean, meanerr, fp2', np.mean(p_fp2_norm_v, axis=0), np.std(p_fp2_norm_v, axis=0) / np.sqrt(npts))
print('mean, meanerr, fp0', np.mean(p_fp0_norm_v, axis=0), np.std(p_fp0_norm_v, axis=0) / np.sqrt(npts))
# mean / err of (normalized difference between true and predicted fixed point)
print()
print('nL2 distance to mean, meanerr, fp1', np.sqrt(np.sum(np.mean(p_fp1_norm_v, axis=0) ** 2)), np.sqrt(np.sum(np.var(p_fp1_norm_v, axis=0)) / npts))
print('nL2 distance to mean, meanerr, fp2', np.sqrt(np.sum(np.mean(p_fp2_norm_v, axis=0) ** 2)), np.sqrt(np.sum(np.var(p_fp2_norm_v, axis=0)) / npts))
print('nL2 distance to mean, meanerr, fp0', np.sqrt(np.sum(np.mean(p_fp0_norm_v, axis=0) ** 2)), np.sqrt(np.sum(np.var(p_fp0_norm_v, axis=0)) / npts))