Skip to content

Latest commit

 

History

History
executable file
·
168 lines (123 loc) · 5.85 KB

README.md

File metadata and controls

executable file
·
168 lines (123 loc) · 5.85 KB

Cross-Domain Few-Shot Semantic Segmentation (CD-FSS)

This is the implementation of the paper "Cross-Domain Few-Shot Semantic Segmentation". For more information, check out the [paper] and [supp].

Introduction

The Cross-Domain Few-Shot Semantic Segmentation includes data from the Deepglobe [1], ISIC2018 [2-3], Chest X-ray [4-5], and FSS-1000 [6] datasets, which covers satellite images, dermoscopic images of skin lesions, X-ray images, and daily objects respectively. The selected datasets reflect real-world use cases for few-shot learning since collecting enough examples from above domains is often difficult, expensive, or in some cases not possible.

We study the CD-FSS problem, where the source and target domains have completely disjoint label space and cannot access target domain data during the training stage.

Datasets

The following datasets are used for evaluation in CD-FSS:

Source domain:

  • PASCAL VOC2012:

    Download PASCAL VOC2012 devkit (train/val data):

    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar

    Download PASCAL VOC2012 SDS extended mask annotations from [Google Drive].

Target domains:

Requirements

  • Python 3.7
  • PyTorch 1.5.1
  • cuda 10.1
  • tensorboard 1.14

Conda environment settings:

conda create -n patnet python=3.7
conda activate patnet

conda install pytorch=1.5.1 torchvision cudatoolkit=10.1 -c pytorch
conda install -c conda-forge tensorflow
pip install tensorboardX

Training

PASCAL VOC

python train.py --backbone {vgg16, resnet50} 
                --fold 4 
                --benchmark pascal
                --lr 1e-3
                --bsz 20
                --logpath "your_experiment_name"

Testing

1. Deepglobe

python test.py --backbone {vgg16, resnet50} 
               --benchmark deepglobe
               --nshot {1, 5} 
               --load "path_to_trained_model/best_model.pt"

2. ISIC

python test.py --backbone {vgg16, resnet50} 
               --benchmark isic 
               --nshot {1, 5} 
               --load "path_to_trained_model/best_model.pt"

3. Chest X-ray

python test.py --backbone {vgg16, resnet50} 
               --benchmark lung 
               --nshot {1, 5} 
               --load "path_to_trained_model/best_model.pt"

4. FSS-1000

python test.py --backbone {vgg16, resnet50} 
               --benchmark fss 
               --nshot {1, 5} 
               --load "path_to_trained_model/best_model.pt"

Citation

If you use this code for your research, please consider citing:

@inproceedings{lei2022cross,
   title={Cross-Domain Few-Shot Semantic Segmentation},
   author={Lei, Shuo and Zhang, Xuchao and He, Jianfeng and Chen, Fanglan and Du, Bowen and Lu, Chang-Tien},
   booktitle={European Conference on Computer Vision},
   pages={73--90},
   year={2022},
   organization={Springer}
 }

Acknowledgement

The implementation is based on HSNet.

References

[1] Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., Hughes, F., Tuia, D., Raskar, R.: Deepglobe 2018: A challenge to parse the earth through satellite images. In: The IEEE Conference on Computer Vision and Pattern Recog- nition (CVPR) Workshops (June 2018)Li, X., Wei, T., Chen, Y.P., Tai, Y.W., Tang, C.K.: Fss-1000: A 1000-class dataset for few-shot segmentation. In: Proceedings of the IEEE/CVF Conference on Com- puter Vision and Pattern Recognition. pp. 2869–2878 (2020)

[2] Codella, N., Rotemberg, V., Tschandl, P., Celebi, M.E., Dusza, S., Gutman, D., Helba, B., Kalloo, A., Liopyris, K., Marchetti, M., et al.: Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). arXiv preprint arXiv:1902.03368 (2019)

[3] Tschandl, P., Rosendahl, C., Kittler, H.: The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific data 5, 180161 (2018)

[4] Candemir, S., Jaeger, S., Palaniappan, K., Musco, J.P., Singh, R.K., Xue, Z., Karargyris, A., Antani, S., Thoma, G., McDonald, C.J.: Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE trans- actions on medical imaging 33(2), 577–590 (2013)

[5] Jaeger, S., Karargyris, A., Candemir, S., Folio, L., Siegelman, J., Callaghan, F., Xue, Z., Palaniappan, K., Singh, R.K., Antani, S., et al.: Automatic tuberculosis screening using chest radiographs. IEEE transactions on medical imaging 33(2), 233–245 (2013)

[6] Li, X., Wei, T., Chen, Y.P., Tai, Y.W., Tang, C.K.: Fss-1000: A 1000-class dataset for few-shot segmentation. In: Proceedings of the IEEE/CVF Conference on Com- puter Vision and Pattern Recognition. pp. 2869–2878 (2020)