forked from GoogleCloudPlatform/professional-services
-
Notifications
You must be signed in to change notification settings - Fork 1
/
model.py
240 lines (206 loc) · 8.83 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Copyright 2019 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""This showcases how simple it is to build image classification networks.
It follows description from this TensorFlow tutorial:
https://www.tensorflow.org/versions/master/tutorials/mnist/pros/index.html#deep-mnist-for-experts
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import json
import os
import sys
import numpy as np
import tensorflow as tf
N_DIGITS = 10 # Number of digits.
X_FEATURE = 'x' # Name of the input feature.
DATA_DIR = os.path.join(os.getenv('TEST_TMPDIR', '/tmp'),
'tensorflow/input_data')
LOG_DIR = os.path.join(os.getenv('TEST_TMPDIR', '/tmp'), 'tensorflow/logs')
MODEL_DIR = os.path.join(os.getenv('TEST_TMPDIR', '/tmp'), 'tensorflow/model')
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--tf-data-dir',
type=str,
default=DATA_DIR,
help='GCS path or local path of training data.')
parser.add_argument('--tf-model-dir',
type=str,
default=LOG_DIR,
help='GCS path or local directory.')
parser.add_argument('--tf-export-dir',
type=str,
default=MODEL_DIR,
help='GCS path or local directory to export model')
parser.add_argument('--tf-model-type',
type=str,
default='CNN',
help='Tensorflow model type for training.')
parser.add_argument('--tf-train-steps',
type=int,
default=200,
help='The number of training steps to perform.')
parser.add_argument('--tf-batch-size',
type=int,
default=100,
help='The number of batch size during training')
parser.add_argument('--tf-learning-rate',
type=float,
default=0.01,
help='Learning rate for training.')
args = parser.parse_args()
return args
def conv_model(features, labels, mode, params):
"""2-layer convolution model."""
# Reshape feature to 4d tensor with 2nd and 3rd dimensions being
# image width and height final dimension being the number of color channels.
feature = tf.reshape(features[X_FEATURE], [-1, 28, 28, 1])
# First conv layer will compute 32 features for each 5x5 patch
with tf.variable_scope('conv_layer1'):
h_conv1 = tf.layers.conv2d(
feature,
filters=32,
kernel_size=[5, 5],
padding='same',
activation=tf.nn.relu)
h_pool1 = tf.layers.max_pooling2d(
h_conv1, pool_size=2, strides=2, padding='same')
# Second conv layer will compute 64 features for each 5x5 patch.
with tf.variable_scope('conv_layer2'):
h_conv2 = tf.layers.conv2d(
h_pool1,
filters=64,
kernel_size=[5, 5],
padding='same',
activation=tf.nn.relu)
h_pool2 = tf.layers.max_pooling2d(
h_conv2, pool_size=2, strides=2, padding='same')
# reshape tensor into a batch of vectors
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
# Densely connected layer with 1024 neurons.
h_fc1 = tf.layers.dense(h_pool2_flat, 1024, activation=tf.nn.relu)
h_fc1 = tf.layers.dropout(
h_fc1,
rate=0.5,
training=(mode == tf.estimator.ModeKeys.TRAIN))
# Compute logits (1 per class) and compute loss.
logits = tf.layers.dense(h_fc1, N_DIGITS, activation=None)
predict = tf.nn.softmax(logits)
classes = tf.cast(tf.argmax(predict, 1), tf.uint8)
# Compute predictions.
predicted_classes = tf.argmax(logits, 1)
if mode == tf.estimator.ModeKeys.PREDICT:
predictions = {
'class': predicted_classes,
'prob': tf.nn.softmax(logits)
}
return tf.estimator.EstimatorSpec(mode, predictions=predictions,
export_outputs={'classes':
tf.estimator.export.PredictOutput({"predictions": predict,
"classes": classes})})
# Compute loss.
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
# Create training op.
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(
learning_rate=params["learning_rate"])
train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
# Compute evaluation metrics.
eval_metric_ops = {
'accuracy': tf.metrics.accuracy(
labels=labels, predictions=predicted_classes)
}
return tf.estimator.EstimatorSpec(
mode, loss=loss, eval_metric_ops=eval_metric_ops)
def cnn_serving_input_receiver_fn():
inputs = {X_FEATURE: tf.placeholder(tf.float32, [None, 28, 28])}
return tf.estimator.export.ServingInputReceiver(inputs, inputs)
def linear_serving_input_receiver_fn():
inputs = {X_FEATURE: tf.placeholder(tf.float32, (784,))}
return tf.estimator.export.ServingInputReceiver(inputs, inputs)
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
args = parse_arguments()
tf_config = os.environ.get('TF_CONFIG', '{}')
tf.logging.info("TF_CONFIG %s", tf_config)
tf_config_json = json.loads(tf_config)
cluster = tf_config_json.get('cluster')
job_name = tf_config_json.get('task', {}).get('type')
task_index = tf_config_json.get('task', {}).get('index')
tf.logging.info("cluster=%s job_name=%s task_index=%s", cluster, job_name,
task_index)
is_chief = False
if not job_name or job_name.lower() in ["chief", "master"]:
is_chief = True
tf.logging.info("Will export model")
else:
tf.logging.info("Will not export model")
# Download and load MNIST dataset.
mnist = tf.contrib.learn.datasets.DATASETS['mnist'](args.tf_data_dir)
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={X_FEATURE: mnist.train.images},
y=mnist.train.labels.astype(np.int32),
batch_size=args.tf_batch_size,
num_epochs=None,
shuffle=True)
test_input_fn = tf.estimator.inputs.numpy_input_fn(
x={X_FEATURE: mnist.train.images},
y=mnist.train.labels.astype(np.int32),
num_epochs=1,
shuffle=False)
training_config = tf.estimator.RunConfig(
model_dir=args.tf_model_dir, save_summary_steps=100, save_checkpoints_steps=1000)
if args.tf_model_type == "LINEAR":
# Linear classifier.
feature_columns = [
tf.feature_column.numeric_column(
X_FEATURE, shape=mnist.train.images.shape[1:])]
classifier = tf.estimator.LinearClassifier(
feature_columns=feature_columns, n_classes=N_DIGITS,
model_dir=args.tf_model_dir, config=training_config)
# TODO(jlewi): Should it be linear_serving_input_receiver_fn here?
serving_fn = cnn_serving_input_receiver_fn
export_final = tf.estimator.FinalExporter(
args.tf_export_dir, serving_input_receiver_fn=cnn_serving_input_receiver_fn)
elif args.tf_model_type == "CNN":
# Convolutional network
model_params = {"learning_rate": args.tf_learning_rate}
classifier = tf.estimator.Estimator(
model_fn=conv_model, model_dir=args.tf_model_dir,
config=training_config, params=model_params)
serving_fn = cnn_serving_input_receiver_fn
export_final = tf.estimator.FinalExporter(
args.tf_export_dir, serving_input_receiver_fn=cnn_serving_input_receiver_fn)
else:
print("No such model type: %s" % args.tf_model_type)
sys.exit(1)
train_spec = tf.estimator.TrainSpec(
input_fn=train_input_fn, max_steps=args.tf_train_steps)
eval_spec = tf.estimator.EvalSpec(input_fn=test_input_fn,
steps=1,
exporters=export_final,
throttle_secs=1,
start_delay_secs=1)
print("Train and evaluate")
tf.estimator.train_and_evaluate(classifier, train_spec, eval_spec)
print("Training done")
if is_chief:
print("Export saved model")
classifier.export_savedmodel(args.tf_export_dir, serving_input_receiver_fn=serving_fn)
print("Done exporting the model")
if __name__ == '__main__':
tf.app.run()