-
Notifications
You must be signed in to change notification settings - Fork 588
/
prepare_data.py
134 lines (104 loc) · 4.63 KB
/
prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from __future__ import print_function
import os
from xml.etree import ElementTree
import numpy as np
import drawing
def get_stroke_sequence(filename):
tree = ElementTree.parse(filename).getroot()
strokes = [i for i in tree if i.tag == 'StrokeSet'][0]
coords = []
for stroke in strokes:
for i, point in enumerate(stroke):
coords.append([
int(point.attrib['x']),
-1*int(point.attrib['y']),
int(i == len(stroke) - 1)
])
coords = np.array(coords)
coords = drawing.align(coords)
coords = drawing.denoise(coords)
offsets = drawing.coords_to_offsets(coords)
offsets = offsets[:drawing.MAX_STROKE_LEN]
offsets = drawing.normalize(offsets)
return offsets
def get_ascii_sequences(filename):
sequences = open(filename, 'r').read()
sequences = sequences.replace(r'%%%%%%%%%%%', '\n')
sequences = [i.strip() for i in sequences.split('\n')]
lines = sequences[sequences.index('CSR:') + 2:]
lines = [line.strip() for line in lines if line.strip()]
lines = [drawing.encode_ascii(line)[:drawing.MAX_CHAR_LEN] for line in lines]
return lines
def collect_data():
fnames = []
for dirpath, dirnames, filenames in os.walk('data/raw/ascii/'):
if dirnames:
continue
for filename in filenames:
if filename.startswith('.'):
continue
fnames.append(os.path.join(dirpath, filename))
# low quality samples (selected by collecting samples to
# which the trained model assigned very low likelihood)
blacklist = set(np.load('data/blacklist.npy'))
stroke_fnames, transcriptions, writer_ids = [], [], []
for i, fname in enumerate(fnames):
print(i, fname)
if fname == 'data/raw/ascii/z01/z01-000/z01-000z.txt':
continue
head, tail = os.path.split(fname)
last_letter = os.path.splitext(fname)[0][-1]
last_letter = last_letter if last_letter.isalpha() else ''
line_stroke_dir = head.replace('ascii', 'lineStrokes')
line_stroke_fname_prefix = os.path.split(head)[-1] + last_letter + '-'
if not os.path.isdir(line_stroke_dir):
continue
line_stroke_fnames = sorted([f for f in os.listdir(line_stroke_dir)
if f.startswith(line_stroke_fname_prefix)])
if not line_stroke_fnames:
continue
original_dir = head.replace('ascii', 'original')
original_xml = os.path.join(original_dir, 'strokes' + last_letter + '.xml')
tree = ElementTree.parse(original_xml)
root = tree.getroot()
general = root.find('General')
if general is not None:
writer_id = int(general[0].attrib.get('writerID', '0'))
else:
writer_id = int('0')
ascii_sequences = get_ascii_sequences(fname)
assert len(ascii_sequences) == len(line_stroke_fnames)
for ascii_seq, line_stroke_fname in zip(ascii_sequences, line_stroke_fnames):
if line_stroke_fname in blacklist:
continue
stroke_fnames.append(os.path.join(line_stroke_dir, line_stroke_fname))
transcriptions.append(ascii_seq)
writer_ids.append(writer_id)
return stroke_fnames, transcriptions, writer_ids
if __name__ == '__main__':
print('traversing data directory...')
stroke_fnames, transcriptions, writer_ids = collect_data()
print('dumping to numpy arrays...')
x = np.zeros([len(stroke_fnames), drawing.MAX_STROKE_LEN, 3], dtype=np.float32)
x_len = np.zeros([len(stroke_fnames)], dtype=np.int16)
c = np.zeros([len(stroke_fnames), drawing.MAX_CHAR_LEN], dtype=np.int8)
c_len = np.zeros([len(stroke_fnames)], dtype=np.int8)
w_id = np.zeros([len(stroke_fnames)], dtype=np.int16)
valid_mask = np.zeros([len(stroke_fnames)], dtype=np.bool)
for i, (stroke_fname, c_i, w_id_i) in enumerate(zip(stroke_fnames, transcriptions, writer_ids)):
if i % 200 == 0:
print(i, '\t', '/', len(stroke_fnames))
x_i = get_stroke_sequence(stroke_fname)
valid_mask[i] = ~np.any(np.linalg.norm(x_i[:, :2], axis=1) > 60)
x[i, :len(x_i), :] = x_i
x_len[i] = len(x_i)
c[i, :len(c_i)] = c_i
c_len[i] = len(c_i)
w_id[i] = w_id_i
if not os.path.isdir('data/processed'):
os.makedirs('data/processed')
np.save('data/processed/x.npy', x[valid_mask])
np.save('data/processed/x_len.npy', x_len[valid_mask])
np.save('data/processed/c.npy', c[valid_mask])
np.save('data/processed/c_len.npy', c_len[valid_mask])
np.save('data/processed/w_id.npy', w_id[valid_mask])