-
Notifications
You must be signed in to change notification settings - Fork 634
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
华为&leetcode146:LRU 缓存机制 #7
Comments
|
class LRUCache {
constructor(max) {
this.max = max
this.keys = []
this.cache = {}
}
get = (k) => {
if (this.cache[k]) {
this.remove(this.keys, k)
this.keys.push(k)
return this.cache[k]
} else {
return -1
}
}
put = (k, v) => {
if (this.cache[k]) return
this.keys.push(k)
if (this.keys.length > this.max) {
delete this.cache[this.keys[0]]
this.keys.shift()
}
this.cache[k] = v
}
remove = (arr, item) => {
if (arr.length) {
const index = arr.indexOf(item)
if (index > -1) {
return arr.splice(index, 1)
}
}
}
} |
感觉对象数组应该挺好实现的,每次调用get方法获取数据或者put方法更新数据,都会将数据队列顺序都更新了,需要注意的是,put方法,需要判断当前队列长度是否超过缓存容量长度、是否是队列中已有的key这些问题,然后做对应操作。 class LRUCache{
constructor(max){
this.max = max;
this.stack = [];
}
// 当前队列的长度
get __length(){
return this.stack.length;
}
// 查找元素下标
_findIdx(key){
const {stack} = this;
for(let i=0; i<stack.length; i++){
if(stack[i].key === key){
return i;
}
}
return -1;
}
// 末尾追加元素
_push(key, value){
this.stack.push({key, value});
}
// 访问数据
get(key){
const findIdx = this._findIdx(key);
if(findIdx === -1) return -1;
const [data] = this.stack.splice(findIdx, 1);
this._push(data.key, data.value);
return data.value;
}
// 增加数据
put(key, value){
const findIdx = this._findIdx(key);
if(findIdx === -1){ // 元素不存在
if(this.__length < this.max){ // 新增
this._push(key, value);
}else{ // 缓存容量将要溢出
// 去掉最久未访问的元素
const {key: delKey} = this.stack.shift();
console.log(`该操作会使得密钥 ${delKey} 作废`)
// 将最新的数据追加
this._push(key, value);
}
}else{ // 元素存在,更新
this.stack.splice(findIdx, 1);
this._push({key, value})
}
}
}
// 测试
const cache = new LRUCache( 2 /* 缓存容量 */ );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // 返回 1
cache.put(3, 3); // 该操作会使得密钥 2 作废
cache.get(2); // 返回 -1 (未找到)
cache.put(4, 4); // 该操作会使得密钥 1 作废
cache.get(1); // 返回 -1 (未找到)
cache.get(3); // 返回 3
cache.get(4); // 返回 4 感觉自己想得有些复杂了,多搞个变量来存放key不就好了 class LRUCache{
constructor(max){
this.max = max;
this.keys = [];
this.data = {};
}
get __length(){
return this.keys.length;
}
$find(key){
return this.keys.indexOf(key);
}
get(key){
const findIdx = this.$find(key);
if(findIdx === -1) return -1;
this.keys.push(this.keys.splice(findIdx, 1));
return this.data[key]
}
put(key, value){
const findIdx = this.$find(key);
if(findIdx === -1){
if(this.__length === this.max){
const delKey = this.keys.shift();
delete this.data[delKey];
console.log(`该操作会使得密钥 ${delKey} 作废`);
}
this.keys.push(key);
this.data[key] = value;
}else{ // 更新
this.keys.push(this.keys.splice(findIdx, 1));
this.data[key] = value;
}
}
} |
|
基础解法:数组+对象实现 类 vue keep-alive 实现 var LRUCache = function(capacity) {
this.keys = []
this.cache = Object.create(null)
this.capacity = capacity
};
LRUCache.prototype.get = function(key) {
if(this.cache[key]) {
// 调整位置
remove(this.keys, key)
this.keys.push(key)
return this.cache[key]
}
return -1
};
LRUCache.prototype.put = function(key, value) {
if(this.cache[key]) {
// 存在即更新
this.cache[key] = value
remove(this.keys, key)
this.keys.push(key)
} else {
// 不存在即加入
this.keys.push(key)
this.cache[key] = value
// 判断缓存是否已超过最大值
if(this.keys.length > this.capacity) {
removeCache(this.cache, this.keys, this.keys[0])
}
}
};
// 移除 key
function remove(arr, key) {
if (arr.length) {
const index = arr.indexOf(key)
if (index > -1) {
return arr.splice(index, 1)
}
}
}
// 移除缓存中 key
function removeCache(cache, keys, key) {
cache[key] = null
remove(keys, key)
} 进阶:Map 利用 Map 既能保存键值对,并且能够记住键的原始插入顺序 var LRUCache = function(capacity) {
this.cache = new Map()
this.capacity = capacity
}
LRUCache.prototype.get = function(key) {
if (this.cache.has(key)) {
// 存在即更新
let temp = this.cache.get(key)
this.cache.delete(key)
this.cache.set(key, temp)
return temp
}
return -1
}
LRUCache.prototype.put = function(key, value) {
if (this.cache.has(key)) {
// 存在即更新(删除后加入)
this.cache.delete(key)
} else if (this.cache.size >= this.capacity) {
// 不存在即加入
// 缓存超过最大值,则移除最近没有使用的
this.cache.delete(this.cache.keys().next().value)
}
this.cache.set(key, value)
} |
有定期在 github 更新 leetcode 和其他 OI 里面的题目。欢迎各位 watch 讨论(不用star)。 /**
* @param {number} capacity
*/var LRUCache = function(capacity) {
this.cache = new Map();
this.capacity = capacity;
};
/**
* @param {number} key
* @return {number}
*/
LRUCache.prototype.get = function(key) {
let cache = this.cache;
if (cache.has(key)) {
// 如果有就删了重新插入,保证是新的插在最后面
let temp = cache.get(key);
cache.delete(key);
cache.set(key, temp);
return temp;
} else {
return -1;
}
};
/**
* @param {number} key
* @param {number} value
* @return {void}
*/
LRUCache.prototype.put = function(key, value) {
let cache = this.cache;
if (cache.has(key)) {
// 同get
cache.delete(key);
} else if (cache.size >= this.capacity) {
// 缓存已满时,cache.keys().next()返回最开始插入的
cache.delete(cache.keys().next().value);
}
cache.set(key, value);
}; 思路在操作系统中, LRU 是一种常用的页面置换算法。其目的在于在发生缺页中断时,将最长时间未使用的页面给置换出去。因此,我们需要算法中的效率足够的高。
从上面分析来看,哈希表+双向链表就是 LRU 缓存算法的核心数据结构了。我们使用链表尾部结点来表示最近访问的结点。 细心的读者可能会产生疑问,为什么使用双向链表而不是单向链表? 首先,我们设计链表的结点: class ListNode:
def __init__(self, key=None, value=None):
self.key = key
self.value = value
self.prev = None
self.next = None 细心的读者会发现,我们在设计结点的时候重复存储了 key(哈希表和双向链表中都存储了 key),这又是为什么呢? 代码class ListNode:
def __init__(self, key=None, value=None):
self.key = key
self.value = value
self.prev = None
self.next = None
class LRUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.hashmap = {}
# 新建两个节点 head 和 tail
self.head = ListNode()
self.tail = ListNode()
# 初始化链表为 head <-> tail
self.head.next = self.tail
self.tail.prev = self.head
# get 和 put 操作可能都会调用 move_to_tail 方法
def move_to_tail(self, key):
node = self.hashmap[key]
# 将 node 结点的前驱结点和后驱结点相连
node.prev.next = node.next
node.next.prev = node.prev
# 将 node 插入到尾节点前
node.prev = self.tail.prev
node.next = self.tail
self.tail.prev.next = node
self.tail.prev = node
def get(self, key: int) -> int:
if key in self.hashmap:
# 如果已经在链表中了久把它移到末尾(变成最新访问的)
self.move_to_tail(key)
return self.hashmap.get(key).value
return -1
def put(self, key: int, value: int) -> None:
if key in self.hashmap:
# 如果 key 本身已经在哈希表中了就不需要在链表中加入新的节点
# 但是需要更新字典该值对应节点的 value
self.hashmap[key].value = value
# 之后将该节点移到末尾
self.move_to_tail(key)
else:
if len(self.hashmap) == self.capacity:
# 去掉哈希表对应项
self.hashmap.pop(self.head.next.key)
# 去掉最久没有被访问过的节点,即头节点之后的节点
self.head.next = self.head.next.next
self.head.next.prev = self.head
# 将新结点插入到尾节点前
newNode = ListNode(key, value)
self.hashmap[key] = newNode
newNode.prev = self.tail.prev
newNode.next = self.tail
self.tail.prev.next = newNode
self.tail.prev = newNode |
/**
* leetcode
* LRU 缓存机制算法
* @param {*} maxlength
*/
function LRU(maxlength) {
this.maxLength = maxlength;
this.cache = [];
}
LRU.prototype = {
constructor: LRU,
get: function (key) {
const index = this.findIndex(key);
// 移动到最前面
if (index !== -1) {
const item = this.cache[index];
this.cache.splice(index, 1);
this.cache.unshift(item);
delete item;
return this.cache[0].value;
}
return -1;
},
put: function (key, value) {
const index = this.findIndex(key);
if (index !== -1) this.cache.splice(index, 1);
this.cache.unshift({ key, value });
this.remove();
},
findIndex: function (key) {
return this.cache.findIndex((item) => item.key === key);
},
remove: function () {
if (this.cache.length > this.maxLength) {
this.cache.pop();
}
},
};
const cache = new LRU(2);
cache.put(1, 1);
cache.put(2, 2);
console.log('cache.get(1): ', cache.get(1)); // 返回 1
cache.put(3, 3); // 该操作会使得密钥 2 作废
console.log('cache.get(2): ', cache.get(2)); // 返回 -1 (未找到)
cache.put(4, 4); // 该操作会使得密钥 1 作废
console.log('cache.get(1): ', cache.get(1)); // 返回 -1 (未找到)
console.log('cache.get(3): ', cache.get(3)); // 返回 3
console.log('cache.get(4): ', cache.get(4)); // 返回 4 |
看了下 所有的实现,基本上要么是基于数组的维护key的顺序(这需要O(n)的时间找到key所在的索引),要么依赖map本身能维护插入的顺序:访问的时候key的时候删除key重新加入key,这样这个key就在末尾了最后被淘汰,之前写了个基于双向链表 + 哈希表的,这里提供一个思路: class Node {
constructor(value, prev, next) {
this.value = value;
this.prev = prev;
this.next = next;
}
}
class DoubleLinkedList {
constructor() {
this.head = null;
this.tail = null;
}
insertFirst(value) {
if (!this.head) {
this.head = this.tail = new Node(value);
} else {
const newNode = new Node(value, null, this.head);
this.head.prev = newNode;
this.head = newNode;
}
return this.head;
}
deleteLast() {
if (!this.tail) return null;
const ret = this.tail;
const newTail = this.tail.prev;
if (!newTail) {
this.head = null;
} else {
newTail.next = null;
}
return ret.value;
}
// 把节点移动到头部
moveToFront(node) {
if (!node || node === this.head) return; // 已经在头部了
const {prev, next} = node;
// 这个判断其实没有必要,因为前面已经判断过不是头结点了,前驱节点一定存在,写这个的目的是
if (prev) {
prev.next = next;
}
if (next) {
next.prev = prev;
}
node.prev = null;
node.next = this.head;
this.head.prev = node;
this.head = node;
}
}
class LRU {
constructor() {
this.list = new DoubleLinkedList();
this.map = new Map(); // key => 元素 ;value,双向链表中的节点
}
/**
* 将不存在数据结构中的元素插入
* @param value
*/
access(value) {
let node = this.map.get(value);
if (!node) {
node = this.list.insertFirst(value);
this.map.set(value, node);
} else {
this.list.moveToFront(node);
}
}
/**
* 删除并返回最近最少访问的元素
*/
delete() {
const value = this.list.deleteLast();
this.map.delete(value);
return value;
}
toString() {
let cur = this.list.head;
const values = [];
while (cur) {
values.push(cur.value);
cur = cur.next;
}
return values.join(' -> ');
}
}
const cache = new LRU();
cache.access(7);
console.log(cache.toString());
cache.access(0);
console.log(cache.toString());
cache.access(1);
console.log(cache.toString());
cache.access(2);
console.log(cache.toString());
cache.access(0);
console.log(cache.toString());
cache.access(3);
console.log(cache.toString());
cache.access(0);
console.log(cache.toString());
console.log('delete last',cache.delete());
console.log(cache.toString());
cache.access(4);
console.log(cache.toString()); |
var LRUCache = function(num) { |
|
双向链表+Map class LRUCache{
cache=new Map()
capacity
head={} //head表示最少访问
constructor(capacity){
this.capacity=capacity
this.link(this.head,this.head)
}
link(nodeA,nodeB){
nodeA.next=nodeB
nodeB.prev=nodeA
}
moveToTail(cache_at_key){ //tail表示最近访问
//优化:连续访问时无需操作
if(cache_at_key.next===this.head) return;
this.link(cache_at_key.prev,cache_at_key.next)
let tail_prev_node=this.head.prev
this.link(tail_prev_node,cache_at_key)
this.link(cache_at_key,this.head)
}
get(key){
let cache_at_key=this.cache.get(key)
if(cache_at_key){
//命中,放到最近访问
this.moveToTail(cache_at_key)
return cache_at_key.value
}
else{
return -1
}
}
put(key,value){
let cache_at_key=this.cache.get(key)
if(cache_at_key){
cache_at_key.value=value
//命中,放到最近访问
this.moveToTail(cache_at_key)
}
else{
if(this.cache.size===this.capacity){
let lru_node=this.head.next
this.link(this.head,lru_node.next)
//淘汰LRU
this.cache.delete(lru_node.key)
}
//创建节点,并放到最近访问
this.cache.set(key,{value,key})
let cache_at_key=this.cache.get(key)
this.link(this.head.prev,cache_at_key)
this.link(cache_at_key,this.head)
}
}
} |
这里应该要 delete cache[key] 吧 |
class LRUCahce {
constructor(capacity) {
this.cahce = new Map()
this.capacity = capacity
}
get(key) {
if (this.cache.has(key)) {
const temp = this.cache.get(key)
this.cache.delete(key)
this.cache.set(key, temp)
return temp
}
return -1
}
put(key, value) {
if(this.cahce.has(key)) {
this.cache.delete(key)
}else if(this.cache.size === this.capacity) {
this.cache.delete(this.cache.keys().next().value)
}
this.cache.set(key, value)
}
} |
/**
/**
/**
}; /**
|
借助javascript Map的特性:map的键是按照set的顺序存储的。 var LRUCache = function(capacity) {
this.cache = new Map()
this.capacity = capacity
}
LRUCache.prototype.get = function(key) {
if (this.cache.has(key)) {
// 存在即更新
let temp = this.cache.get(key)
this.cache.delete(key)
this.cache.set(key, temp)
return temp
}
return -1
}
LRUCache.prototype.put = function(key, value) {
if (this.cache.has(key)) {
// 存在即更新(删除后加入)
this.cache.delete(key)
} else if (this.cache.size >= this.capacity) {
// 不存在即加入
// 缓存超过最大值,则移除最近没有使用的
this.cache.delete(this.cache.keys().next().value)
}
this.cache.set(key, value)
} |
第一种方法里面,if(this.cache[key])如果值正好是0就有问题了呢~ |
题目地址(146. LRU 缓存机制)https://leetcode-cn.com/problems/lru-cache/ 题目描述运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制 。 实现
进阶:你是否可以在 示例:
思路
伪代码如下: var LRUCache = function(capacity) {
保存一个该数据结构的最大容量
生成一个双向链表,同时保存该链表的头结点与尾节点
生成一个哈希表
};
function get (key) {
if 哈希表中存在该关键字 {
根据哈希表获取该链表节点
将该节点放置于链表头部
return 链表节点的值
} else {
return -1
}
};
function put (key, value) {
if 哈希表中存在该关键字 {
根据哈希表获取该链表节点
将该链表节点的值更新
将该节点放置于链表头部
} else {
if 容量已满 {
删除链表尾部的节点
新生成一个节点
将该节点放置于链表头部
} else {
新生成一个节点
将该节点放置于链表头部
}
}
}; 代码语言支持: JS, Go, PHP, CPP JS Code: function ListNode(key, val) {
this.key = key;
this.val = val;
this.pre = this.next = null;
}
var LRUCache = function (capacity) {
this.capacity = capacity;
this.size = 0;
this.data = {};
this.head = new ListNode();
this.tail = new ListNode();
this.head.next = this.tail;
this.tail.pre = this.head;
};
function get(key) {
if (this.data[key] !== undefined) {
let node = this.data[key];
this.removeNode(node);
this.appendHead(node);
return node.val;
} else {
return -1;
}
}
function put(key, value) {
let node;
if (this.data[key] !== undefined) {
node = this.data[key];
this.removeNode(node);
node.val = value;
} else {
node = new ListNode(key, value);
this.data[key] = node;
if (this.size < this.capacity) {
this.size++;
} else {
key = this.removeTail();
delete this.data[key];
}
}
this.appendHead(node);
}
function removeNode(node) {
let preNode = node.pre,
nextNode = node.next;
preNode.next = nextNode;
nextNode.pre = preNode;
}
function appendHead(node) {
let firstNode = this.head.next;
this.head.next = node;
node.pre = this.head;
node.next = firstNode;
firstNode.pre = node;
}
function removeTail() {
let key = this.tail.pre.key;
this.removeNode(this.tail.pre);
return key;
} Go Code: type LRUCache struct {
Cap int
Hash map[int]*DoubleListNode
Cache *DoubleList
Size int
}
func Constructor(capacity int) LRUCache {
return LRUCache{
Cap: capacity,
Hash: make(map[int]*DoubleListNode),
Cache: NewDoubleList(),
}
}
func (this *LRUCache) Get(key int) int {
n, ok := this.Hash[key]
if !ok {
return -1
}
// 设为最近使用过
this.Cache.remove(n)
this.Cache.append(n)
return n.Val
}
func (this *LRUCache) Put(key int, value int) {
n, ok := this.Hash[key]
if !ok { // cache 不存在
// 增加节点
newNode := &DoubleListNode{Key: key, Val: value}
this.Hash[key] = newNode
this.Cache.append(newNode)
if this.Cap == this.Size { // 已满
// 删除尾节点
tailNode := this.Cache.tail.Pre
delete(this.Hash, tailNode.Key)
this.Cache.remove(tailNode)
} else {
this.Size++
}
} else {
// cache 存在
// 设为最近使用过
this.Cache.remove(n)
this.Cache.append(n)
n.Val = value // 更新值
}
}
type DoubleListNode struct {
Key, Val int
Pre, Next *DoubleListNode
}
type DoubleList struct {
Head, tail *DoubleListNode
}
func NewDoubleList() *DoubleList {
dl := &DoubleList{
Head: &DoubleListNode{},
tail: &DoubleListNode{},
}
dl.Head.Next = dl.tail
dl.tail.Pre = dl.Head
return dl
}
func (dl *DoubleList) append(n *DoubleListNode) {
n.Next = dl.Head.Next
n.Pre = dl.Head
dl.Head.Next.Pre = n
dl.Head.Next = n
}
func (dl *DoubleList) remove(n *DoubleListNode) {
n.Pre.Next = n.Next
n.Next.Pre = n.Pre
} PHP Code: class LRUCache
{
public $hash = []; // key => DoubleListNode
public $cache;
public $size = 0;
public $cap; // 容量
/**
* @param Integer $capacity
*/
function __construct($capacity)
{
$this->cap = $capacity;
$this->cache = new DoubleList();
}
/**
* @param Integer $key
* @return Integer
*/
function get($key)
{
if (!isset($this->hash[$key])) return -1;
// 更新节点
/** @var DoubleListNode $node */
$node = $this->hash[$key];
$this->cache->remove($node);
$this->cache->append($node);
return $node->val;
}
/**
* @param Integer $key
* @param Integer $value
* @return NULL
*/
function put($key, $value)
{
if (isset($this->hash[$key])) { // key 存在
// 更新节点
/** @var DoubleListNode $node */
$node = $this->hash[$key];
$this->cache->remove($node);
$this->cache->append($node);
$node->val = $value;
} else { // key 不存在, 新增节点
$node = new DoubleListNode($key, $value);
$this->cache->append($node);
$this->hash[$key] = $node;
if ($this->size == $this->cap) {
// 删除原节点
$oldNode = $this->cache->tail->pre;
$this->cache->remove($oldNode);
unset($this->hash[$oldNode->key]);
} else {
$this->size++;
}
}
}
}
class DoubleListNode
{
public $key;
public $val;
public $pre;
public $next;
public function __construct($key = null, $val = null)
{
if ($key) $this->key = $key;
if ($val) $this->val = $val;
}
}
class DoubleList
{
public $head;
public $tail;
public function __construct()
{
$this->head = new DoubleListNode();
$this->tail = new DoubleListNode();
$this->head->next = $this->tail;
$this->tail->pre = $this->head;
}
public function append(DoubleListNode $node)
{
$node->pre = $this->head;
$node->next = $this->head->next;
$this->head->next->pre = $node;
$this->head->next = $node;
}
public function remove(DoubleListNode $node)
{
$node->pre->next = $node->next;
$node->next->pre = $node->pre;
}
} CPP Code: class LRUCache {
private:
list<pair<int, int>> data;
unordered_map<int, list<pair<int, int>>::iterator> m;
int capacity;
public:
LRUCache(int capacity) : capacity(capacity) {}
int get(int key) {
if (!m.count(key)) return -1;
data.splice(data.begin(), data, m[key]);
m[key] = data.begin();
return data.front().second;
}
void put(int key, int value) {
if (get(key) == -1) {
if (data.size() == capacity) {
auto p = data.back();
m.erase(p.first);
data.pop_back();
}
data.emplace_front(key, value);
m[key] = data.begin();
} else data.front().second = value;
}
}; 复杂度分析
|
class LRUCache {
constructor (size) {
this.size = size;
this.caches = new Map()
}
put (key,val) {
if (this.caches.size >= this.size) {
this.caches.delete(this.caches.keys().next().value)
this.caches.set(key,val)
} else {
this.caches.set(key,val)
}
}
get (key) {
if (this.caches.has(key)) {
let temp = this.caches.get(key)
this.caches.delete(key)
this.caches.set(key,temp)
return this.caches.get(key)
} else {
return -1;
}
}
} |
class LRUCache{
constructor(cacheVolume){
this.cache = []
this.cacheLen = cacheVolume
this.cacheIndex = 0
}
put(key, value){
if (this.cacheIndex == this.cacheLen){
this.cache.shift()
}else{
this.cacheIndex ++
}
this.cache.push({
[key]: value
})
}
get(key){
let item = this.cache.find(item => key in item)
if (item !== undefined){
let index = this.cache.indexOf(item)
this.cache.splice(index, 1)
this.cache.push(item)
return item[key]
}
return -1
}
} |
add 也属于操作数据,所以每次都要更新下缓存,在 |
class LRUCache {
constructor(max) {
this.map = new Map()
this.max = max;
}
get (k) {
if (this.map.has(k)) {
var v = this.map.get(k)
this.map.delete(k)
this.map.set(k, v)
return this.map.get(k)
}
return -1
}
put(k, v) {
this.map.set(k, v)
if (this.map.size > this.max){
var fk = this.map.keys().next().value;
if (fk) {
this.map.delete(fk)
}
}
}
} |
class LRUCache {
max: number
map: Map<number, number> = new Map()
constructor(capacity: number) {
this.max = capacity
this.map = new Map()
}
get(key: number): number {
if (this.map.has(key)) {
let value = this.map.get(key)
this.map.delete(key)
this.map.set(key, value)
return value
} else {
return -1
}
}
put(key: number, value: number): void {
if (this.map.has(key)) {
this.map.delete(key)
this.map.set(key, value)
} else {
if (this.map.size === this.max) {
let firstKey = this.map.keys().next().value;
this.map.delete(firstKey);
}
this.map.set(key, value)
}
}
} |
class LinkNode {
constructor(key, value) {
this.key = key
this.value = value
this.prev = null
this.next = null
}
}
class LRUCache {
constructor(capacity) {
this.cache = new Map()
this.capacity = capacity
this.head = null
this.tail = null
this.#init()
}
#init() {
this.head = new LinkNode()
this.tail = new LinkNode()
this.head.next = this.tail
this.tail.prev = this.head
}
get(key) {
if (this.cache.has(key)) {
let node = this.cache.get(key)
this.#deleteNode(node)
this.#addNode(node)
return node.value
} else {
return -1
}
}
put(key, value) {
if (this.cache.has(key)) {
let node = this.cache.get(key)
node.value = value
this.#deleteNode(node)
this.#addNode(node)
} else {
let node = new LinkNode(key, value)
this.cache.set(key, node)
this.#addNode(node)
if (this.cache.size > this.capacity) {
let deleteKey = this.#deleteTailNode()
this.cache.delete(deleteKey)
}
}
}
#deleteTailNode() {
let key = this.tail.prev.key
this.#deleteNode(this.tail.prev)
this.cache.delete(key)
return key
}
#deleteNode(node) {
node.next.prev = node.prev
node.prev.next = node.next
}
#addNode(node) {
let firstNode = this.head.next
this.head.next = node
node.prev = this.head
node.next = firstNode
firstNode.prev = node
}
} |
运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据
get
和写入数据put
。获取数据
get(key)
- 如果密钥 (key
) 存在于缓存中,则获取密钥的值(总是正数),否则返回-1
。写入数据
put(key, value)
- 如果密钥不存在,则写入数据。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据,从而为新数据留出空间。进阶:
你是否可以在 O(1) 时间复杂度内完成这两种操作?
示例:
附leetcode地址:leetcode
The text was updated successfully, but these errors were encountered: