forked from bitcoin/bitcoin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
key.cpp
370 lines (308 loc) · 13.1 KB
/
key.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
// Copyright (c) 2020-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <chainparams.h>
#include <key.h>
#include <key_io.h>
#include <outputtype.h>
#include <policy/policy.h>
#include <pubkey.h>
#include <rpc/util.h>
#include <script/keyorigin.h>
#include <script/script.h>
#include <script/sign.h>
#include <script/signingprovider.h>
#include <script/solver.h>
#include <streams.h>
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/fuzz/fuzz.h>
#include <test/fuzz/util.h>
#include <util/chaintype.h>
#include <util/strencodings.h>
#include <array>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <numeric>
#include <optional>
#include <string>
#include <vector>
void initialize_key()
{
static ECC_Context ecc_context{};
SelectParams(ChainType::REGTEST);
}
FUZZ_TARGET(key, .init = initialize_key)
{
const CKey key = [&] {
CKey k;
k.Set(buffer.begin(), buffer.end(), true);
return k;
}();
if (!key.IsValid()) {
return;
}
{
assert(key.begin() + key.size() == key.end());
assert(key.IsCompressed());
assert(key.size() == 32);
assert(DecodeSecret(EncodeSecret(key)) == key);
}
{
CKey invalid_key;
assert(!(invalid_key == key));
assert(!invalid_key.IsCompressed());
assert(!invalid_key.IsValid());
assert(invalid_key.size() == 0);
}
{
CKey uncompressed_key;
uncompressed_key.Set(buffer.begin(), buffer.end(), false);
assert(!(uncompressed_key == key));
assert(!uncompressed_key.IsCompressed());
assert(key.size() == 32);
assert(uncompressed_key.begin() + uncompressed_key.size() == uncompressed_key.end());
assert(uncompressed_key.IsValid());
}
{
CKey copied_key;
copied_key.Set(key.begin(), key.end(), key.IsCompressed());
assert(copied_key == key);
}
const uint256 random_uint256 = Hash(buffer);
{
CKey child_key;
ChainCode child_chaincode;
const bool ok = key.Derive(child_key, child_chaincode, 0, random_uint256);
assert(ok);
assert(child_key.IsValid());
assert(!(child_key == key));
assert(child_chaincode != random_uint256);
}
const CPubKey pubkey = key.GetPubKey();
{
assert(pubkey.size() == 33);
assert(key.VerifyPubKey(pubkey));
assert(pubkey.GetHash() != random_uint256);
assert(pubkey.begin() + pubkey.size() == pubkey.end());
assert(pubkey.data() == pubkey.begin());
assert(pubkey.IsCompressed());
assert(pubkey.IsValid());
assert(pubkey.IsFullyValid());
assert(HexToPubKey(HexStr(pubkey)) == pubkey);
assert(GetAllDestinationsForKey(pubkey).size() == 3);
}
{
DataStream data_stream{};
pubkey.Serialize(data_stream);
CPubKey pubkey_deserialized;
pubkey_deserialized.Unserialize(data_stream);
assert(pubkey_deserialized == pubkey);
}
{
const CScript tx_pubkey_script = GetScriptForRawPubKey(pubkey);
assert(!tx_pubkey_script.IsPayToScriptHash());
assert(!tx_pubkey_script.IsPayToWitnessScriptHash());
assert(!tx_pubkey_script.IsPushOnly());
assert(!tx_pubkey_script.IsUnspendable());
assert(tx_pubkey_script.HasValidOps());
assert(tx_pubkey_script.size() == 35);
const CScript tx_multisig_script = GetScriptForMultisig(1, {pubkey});
assert(!tx_multisig_script.IsPayToScriptHash());
assert(!tx_multisig_script.IsPayToWitnessScriptHash());
assert(!tx_multisig_script.IsPushOnly());
assert(!tx_multisig_script.IsUnspendable());
assert(tx_multisig_script.HasValidOps());
assert(tx_multisig_script.size() == 37);
FillableSigningProvider fillable_signing_provider;
assert(!IsSegWitOutput(fillable_signing_provider, tx_pubkey_script));
assert(!IsSegWitOutput(fillable_signing_provider, tx_multisig_script));
assert(fillable_signing_provider.GetKeys().size() == 0);
assert(!fillable_signing_provider.HaveKey(pubkey.GetID()));
const bool ok_add_key = fillable_signing_provider.AddKey(key);
assert(ok_add_key);
assert(fillable_signing_provider.HaveKey(pubkey.GetID()));
FillableSigningProvider fillable_signing_provider_pub;
assert(!fillable_signing_provider_pub.HaveKey(pubkey.GetID()));
const bool ok_add_key_pubkey = fillable_signing_provider_pub.AddKeyPubKey(key, pubkey);
assert(ok_add_key_pubkey);
assert(fillable_signing_provider_pub.HaveKey(pubkey.GetID()));
TxoutType which_type_tx_pubkey;
const bool is_standard_tx_pubkey = IsStandard(tx_pubkey_script, std::nullopt, which_type_tx_pubkey);
assert(is_standard_tx_pubkey);
assert(which_type_tx_pubkey == TxoutType::PUBKEY);
TxoutType which_type_tx_multisig;
const bool is_standard_tx_multisig = IsStandard(tx_multisig_script, std::nullopt, which_type_tx_multisig);
assert(is_standard_tx_multisig);
assert(which_type_tx_multisig == TxoutType::MULTISIG);
std::vector<std::vector<unsigned char>> v_solutions_ret_tx_pubkey;
const TxoutType outtype_tx_pubkey = Solver(tx_pubkey_script, v_solutions_ret_tx_pubkey);
assert(outtype_tx_pubkey == TxoutType::PUBKEY);
assert(v_solutions_ret_tx_pubkey.size() == 1);
assert(v_solutions_ret_tx_pubkey[0].size() == 33);
std::vector<std::vector<unsigned char>> v_solutions_ret_tx_multisig;
const TxoutType outtype_tx_multisig = Solver(tx_multisig_script, v_solutions_ret_tx_multisig);
assert(outtype_tx_multisig == TxoutType::MULTISIG);
assert(v_solutions_ret_tx_multisig.size() == 3);
assert(v_solutions_ret_tx_multisig[0].size() == 1);
assert(v_solutions_ret_tx_multisig[1].size() == 33);
assert(v_solutions_ret_tx_multisig[2].size() == 1);
OutputType output_type{};
const CTxDestination tx_destination = GetDestinationForKey(pubkey, output_type);
assert(output_type == OutputType::LEGACY);
assert(IsValidDestination(tx_destination));
assert(PKHash{pubkey} == *std::get_if<PKHash>(&tx_destination));
const CScript script_for_destination = GetScriptForDestination(tx_destination);
assert(script_for_destination.size() == 25);
const std::string destination_address = EncodeDestination(tx_destination);
assert(DecodeDestination(destination_address) == tx_destination);
const CPubKey pubkey_from_address_string = AddrToPubKey(fillable_signing_provider, destination_address);
assert(pubkey_from_address_string == pubkey);
CKeyID key_id = pubkey.GetID();
assert(!key_id.IsNull());
assert(key_id == CKeyID{key_id});
assert(key_id == GetKeyForDestination(fillable_signing_provider, tx_destination));
CPubKey pubkey_out;
const bool ok_get_pubkey = fillable_signing_provider.GetPubKey(key_id, pubkey_out);
assert(ok_get_pubkey);
CKey key_out;
const bool ok_get_key = fillable_signing_provider.GetKey(key_id, key_out);
assert(ok_get_key);
assert(fillable_signing_provider.GetKeys().size() == 1);
assert(fillable_signing_provider.HaveKey(key_id));
KeyOriginInfo key_origin_info;
const bool ok_get_key_origin = fillable_signing_provider.GetKeyOrigin(key_id, key_origin_info);
assert(!ok_get_key_origin);
}
{
const std::vector<unsigned char> vch_pubkey{pubkey.begin(), pubkey.end()};
assert(CPubKey::ValidSize(vch_pubkey));
assert(!CPubKey::ValidSize({pubkey.begin(), pubkey.begin() + pubkey.size() - 1}));
const CPubKey pubkey_ctor_1{vch_pubkey};
assert(pubkey == pubkey_ctor_1);
const CPubKey pubkey_ctor_2{vch_pubkey.begin(), vch_pubkey.end()};
assert(pubkey == pubkey_ctor_2);
CPubKey pubkey_set;
pubkey_set.Set(vch_pubkey.begin(), vch_pubkey.end());
assert(pubkey == pubkey_set);
}
{
const CPubKey invalid_pubkey{};
assert(!invalid_pubkey.IsValid());
assert(!invalid_pubkey.IsFullyValid());
assert(!(pubkey == invalid_pubkey));
assert(pubkey != invalid_pubkey);
assert(pubkey < invalid_pubkey);
}
{
// Cover CPubKey's operator[](unsigned int pos)
unsigned int sum = 0;
for (size_t i = 0; i < pubkey.size(); ++i) {
sum += pubkey[i];
}
assert(std::accumulate(pubkey.begin(), pubkey.end(), 0U) == sum);
}
{
CPubKey decompressed_pubkey = pubkey;
assert(decompressed_pubkey.IsCompressed());
const bool ok = decompressed_pubkey.Decompress();
assert(ok);
assert(!decompressed_pubkey.IsCompressed());
assert(decompressed_pubkey.size() == 65);
}
{
std::vector<unsigned char> vch_sig;
const bool ok = key.Sign(random_uint256, vch_sig, false);
assert(ok);
assert(pubkey.Verify(random_uint256, vch_sig));
assert(CPubKey::CheckLowS(vch_sig));
const std::vector<unsigned char> vch_invalid_sig{vch_sig.begin(), vch_sig.begin() + vch_sig.size() - 1};
assert(!pubkey.Verify(random_uint256, vch_invalid_sig));
assert(!CPubKey::CheckLowS(vch_invalid_sig));
}
{
std::vector<unsigned char> vch_compact_sig;
const bool ok_sign_compact = key.SignCompact(random_uint256, vch_compact_sig);
assert(ok_sign_compact);
CPubKey recover_pubkey;
const bool ok_recover_compact = recover_pubkey.RecoverCompact(random_uint256, vch_compact_sig);
assert(ok_recover_compact);
assert(recover_pubkey == pubkey);
}
{
CPubKey child_pubkey;
ChainCode child_chaincode;
const bool ok = pubkey.Derive(child_pubkey, child_chaincode, 0, random_uint256);
assert(ok);
assert(child_pubkey != pubkey);
assert(child_pubkey.IsCompressed());
assert(child_pubkey.IsFullyValid());
assert(child_pubkey.IsValid());
assert(child_pubkey.size() == 33);
assert(child_chaincode != random_uint256);
}
const CPrivKey priv_key = key.GetPrivKey();
{
for (const bool skip_check : {true, false}) {
CKey loaded_key;
const bool ok = loaded_key.Load(priv_key, pubkey, skip_check);
assert(ok);
assert(key == loaded_key);
}
}
}
FUZZ_TARGET(ellswift_roundtrip, .init = initialize_key)
{
FuzzedDataProvider fdp{buffer.data(), buffer.size()};
CKey key = ConsumePrivateKey(fdp, /*compressed=*/true);
if (!key.IsValid()) return;
auto ent32 = fdp.ConsumeBytes<std::byte>(32);
ent32.resize(32);
auto encoded_ellswift = key.EllSwiftCreate(ent32);
auto decoded_pubkey = encoded_ellswift.Decode();
uint256 hash{ConsumeUInt256(fdp)};
std::vector<unsigned char> sig;
key.Sign(hash, sig);
assert(decoded_pubkey.Verify(hash, sig));
}
FUZZ_TARGET(bip324_ecdh, .init = initialize_key)
{
FuzzedDataProvider fdp{buffer.data(), buffer.size()};
// We generate private key, k1.
CKey k1 = ConsumePrivateKey(fdp, /*compressed=*/true);
if (!k1.IsValid()) return;
// They generate private key, k2.
CKey k2 = ConsumePrivateKey(fdp, /*compressed=*/true);
if (!k2.IsValid()) return;
// We construct an ellswift encoding for our key, k1_ellswift.
auto ent32_1 = fdp.ConsumeBytes<std::byte>(32);
ent32_1.resize(32);
auto k1_ellswift = k1.EllSwiftCreate(ent32_1);
// They construct an ellswift encoding for their key, k2_ellswift.
auto ent32_2 = fdp.ConsumeBytes<std::byte>(32);
ent32_2.resize(32);
auto k2_ellswift = k2.EllSwiftCreate(ent32_2);
// They construct another (possibly distinct) ellswift encoding for their key, k2_ellswift_bad.
auto ent32_2_bad = fdp.ConsumeBytes<std::byte>(32);
ent32_2_bad.resize(32);
auto k2_ellswift_bad = k2.EllSwiftCreate(ent32_2_bad);
assert((ent32_2_bad == ent32_2) == (k2_ellswift_bad == k2_ellswift));
// Determine who is who.
bool initiating = fdp.ConsumeBool();
// We compute our shared secret using our key and their public key.
auto ecdh_secret_1 = k1.ComputeBIP324ECDHSecret(k2_ellswift, k1_ellswift, initiating);
// They compute their shared secret using their key and our public key.
auto ecdh_secret_2 = k2.ComputeBIP324ECDHSecret(k1_ellswift, k2_ellswift, !initiating);
// Those must match, as everyone is behaving correctly.
assert(ecdh_secret_1 == ecdh_secret_2);
if (k1_ellswift != k2_ellswift) {
// Unless the two keys are exactly identical, acting as the wrong party breaks things.
auto ecdh_secret_bad = k1.ComputeBIP324ECDHSecret(k2_ellswift, k1_ellswift, !initiating);
assert(ecdh_secret_bad != ecdh_secret_1);
}
if (k2_ellswift_bad != k2_ellswift) {
// Unless both encodings created by them are identical, using the second one breaks things.
auto ecdh_secret_bad = k1.ComputeBIP324ECDHSecret(k2_ellswift_bad, k1_ellswift, initiating);
assert(ecdh_secret_bad != ecdh_secret_1);
}
}