forked from SVAIGBA/TwASP
-
Notifications
You must be signed in to change notification settings - Fork 1
/
twasp_helper.py
524 lines (437 loc) · 18.6 KB
/
twasp_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import argparse
import re
from tqdm import tqdm
import os
from os import path
from collections import defaultdict
from corenlp import StanfordCoreNLP
from nltk.tree import Tree
import json
import copy
import benepar
import nltk
FULL_MODEL = './data_preprocessing/stanford-corenlp-full-2018-10-05'
# The 12 labels follows https://www.aclweb.org/anthology/P06-2013/
chunk_pos = ['ADJP', 'ADVP', 'CLP', 'DNP', 'DP', 'DVP', 'LCP', 'LST', 'NP', 'PP', 'QP', 'VP']
def read_tsv(file_path):
sentence_list = []
label_list = []
with open(file_path, 'r', encoding='utf8') as f:
lines = f.readlines()
sentence = []
labels = []
for line in lines:
line = line.strip()
if line == '':
if len(sentence) > 0:
sentence_list.append(sentence)
label_list.append(labels)
sentence = []
labels = []
continue
items = re.split('\\s+', line)
character = items[0]
label = items[-1]
sentence.append(character)
labels.append(label)
return sentence_list, label_list
def get_word2id(train_path):
word2id = {'<PAD>': 0}
word = ''
index = 1
for line in open(train_path):
if len(line) == 0 or line.startswith('-DOCSTART') or line[0] == "\n":
continue
splits = line.split('\t')
character = splits[0]
label = splits[-1][0]
word += character
if label in ['S', 'E']:
if word not in word2id:
word2id[word] = index
index += 1
word = ''
return word2id
def merge_results(results):
merged = {'index': 0, 'parse': '', 'basicDependencies': [], 'tokens': []}
# merge fix token
token_index = 1
token_start_index = [0]
for i, result in enumerate(results):
tokens = result['tokens']
for token in tokens:
copy_token = copy.deepcopy(token)
copy_token['index'] = token_index
token_index += 1
merged['tokens'].append(copy_token)
token_start_index.append(token_index-1)
# merge parse
new_parse_str = '(ROOT '
for result in results:
parse = result['parse']
new_parse_str += parse
new_parse_str += ' '
new_parse_str += ')'
merged['parse'] = new_parse_str
Tree.fromstring(new_parse_str)
for i, result in enumerate(results):
dep_list = result['basicDependencies']
for dep in dep_list:
copy_dep = copy.deepcopy(dep)
if not copy_dep['governor'] == 0:
copy_dep['governor'] += token_start_index[i]
copy_dep['dependent'] += token_start_index[i]
merged['basicDependencies'].append(copy_dep)
return merged
def request_features_from_stanford(data_path):
data_dir = data_path[:data_path.rfind('/')]
flag = data_path[data_path.rfind('/') + 1: data_path.rfind('.')]
if os.path.exists(path.join(data_dir, flag + '.stanford.json')):
print('The Stanford data file for %s already exists!' % str(data_path))
return None
print('Requesting Stanford results for %s' % str(data_path))
all_sentences, _ = read_tsv(data_path)
sentences_str = []
for sentence in all_sentences:
sentences_str.append(''.join(sentence))
all_data = []
with StanfordCoreNLP(FULL_MODEL, lang='zh') as nlp:
for sentence in tqdm(sentences_str):
results = nlp.request(annotators='parse,depparse', data=sentence)
# result = results['sentences'][0]
result = merge_results(results['sentences'])
all_data.append(result)
# assert len(all_data) == len(sentences_str)
with open(path.join(data_dir, flag + '.stanford.json'), 'w', encoding='utf8') as f:
for data in all_data:
json.dump(data, f, ensure_ascii=False)
f.write('\n')
def request_features_from_berkeley(data_path):
data_dir = data_path[:data_path.rfind('/')]
flag = data_path[data_path.rfind('/') + 1: data_path.rfind('.')]
if not os.path.exists(path.join(data_dir, flag + '.stanford.json')):
print('Do not find the Stanford data file\nRequesting Stanford segmentation results for %s' % str(data_path))
request_features_from_stanford(data_path, flag)
else:
print('The Stanford data file for %s already exists!' % str(data_path))
if os.path.exists(path.join(data_dir, flag + '.berkeley.json')):
print('The Berkeley data file for %s already exists!' % str(data_path))
return None
print('Requesting Berkeley results for %s' % str(data_path))
berkeley_parser = benepar.Parser("benepar_zh")
print('processing: ', flag)
all_data = read_json(path.join(data_dir, flag + '.stanford.json'))
berkeley_all_data = []
for data in tqdm(all_data):
berkeley_data = {}
tokens = data['tokens']
berkeley_data['tokens'] = copy.deepcopy(tokens)
word_list = [token['word'] for token in tokens]
parse = berkeley_parser.parse(word_list)
str_parse = str(parse)
parse_tree = Tree.fromstring(str_parse)
for i, s in enumerate(parse_tree.subtrees(lambda t: t.height() == 2)):
if not s[0] == word_list[i]:
s[0] = word_list[i]
berkeley_data['parse'] = str(parse_tree)
pos_tags = parse_tree.pos()
for i, (bt, (w, pos)) in enumerate(zip(berkeley_data['tokens'], pos_tags)):
# w = w_pos[0]
# pos = w_pos[1]
# try:
assert bt['word'] == w
# except AssertionError:
# print('error in sentence: %s' % ''.join(word_list))
# print('word error: excepted %s, get %s' % (bt['word'], w))
# else:
berkeley_data['tokens'][i]['pos'] = pos
berkeley_all_data.append(berkeley_data)
del berkeley_parser
with open(path.join(data_dir, flag + '.berkeley.json'), 'w', encoding='utf8') as f:
for berkeley_data in berkeley_all_data:
json.dump(berkeley_data, f, ensure_ascii=False)
f.write('\n')
def get_feature2id(data_path, feature_processor, feature_flag, min_threshold=1):
all_feature2count = feature_processor.read_feature2count(data_path)
gram2count = all_feature2count['gram2count']
if feature_flag == 'pos':
feature2count = all_feature2count['pos_tag2count']
elif feature_flag == 'chunk':
feature2count = all_feature2count['chunk_tag2count']
elif feature_flag == 'dep':
feature2count = all_feature2count['dep_tag2count']
else:
raise ValueError()
gram2id = {'<PAD>': 0, '<UNK>': 1}
feature2id = {'<PAD>': 0, '<UNK>': 1}
gram_index = 2
feature_index = 2
for gram, count in gram2count.items():
if count > min_threshold:
gram2id[gram] = gram_index
gram_index += 1
for feature, count in feature2count.items():
if count > min_threshold:
feature2id[feature] = feature_index
feature_index += 1
return gram2id, feature2id
def getlabels(train_path):
_, all_labels = read_tsv(train_path)
label2id = {'<UNK>': 1, 'O': 2}
index = 3
for label_list in all_labels:
for label in label_list:
if label not in label2id:
label2id[label] = index
index += 1
label2id['[CLS]'] = index
index += 1
label2id['[SEP]'] = index
return label2id
def read_json(data_path):
data = []
with open(data_path, 'r', encoding='utf8') as f:
lines = f.readlines()
for line in lines:
line = line.strip()
if line == '':
continue
data.append(json.loads(line))
return data
class berkeley_feature_processor:
def change_tree(self, word_list, t, index):
for i, subtree in enumerate(t):
if type(subtree) == nltk.tree.Tree:
self.change_tree(word_list, subtree, index)
elif type(subtree) == tuple:
newVal = (subtree[0], word_list[index])
subtree = newVal
t[i] = subtree
def read_feature2count(self, data_path):
data_dir = data_path[:data_path.rfind('/')]
all_data = read_json(path.join(data_dir, 'train.berkeley.json'))
gram2count = defaultdict(int)
pos_tag2count = defaultdict(int)
chunk_tag2count = defaultdict(int)
for data in all_data:
tokens = data['tokens']
for token in tokens:
gram2count[token['word']] += 1
pos_tag2count[token['pos']] += 1
pos_tag2count[token['word'] + '_' + token['pos']] += 1
coparse = Tree.fromstring(data['parse'])
for s in coparse.subtrees(lambda t: t.label() in chunk_pos):
leaves = s.leaves()
node = s.label()
chunk_tag2count[node] += 1
for leaf in leaves:
chunk_tag2count[leaf + '_' + node] += 1
chunk_tag2count['ROOT'] = 100
feature2count = {'gram2count': gram2count, 'pos_tag2count': pos_tag2count,
'chunk_tag2count': chunk_tag2count}
return feature2count
def read_features(self, data_path, flag):
data_dir = data_path[:data_path.rfind('/')]
all_data = read_json(path.join(data_dir, flag + '.berkeley.json'))
all_feature_data = []
for data in all_data:
sentence_feature = []
sentence = ''
words = []
tokens = data['tokens']
for token in tokens:
feature_dict = {}
feature_dict['word'] = token['word']
words.append(token['word'])
sentence += token['word']
start_index = token['characterOffsetBegin']
end_index = token['characterOffsetEnd']
feature_dict['char_index'] = [i for i in range(start_index, end_index)]
feature_dict['pos'] = token['pos']
sentence_feature.append(feature_dict)
c_parse = Tree.fromstring(data['parse'])
current_index = 0
for s in c_parse.subtrees(lambda t: t.label() in chunk_pos):
leaves = s.leaves()
if len(leaves) == 0:
continue
node = s.label()
index = words[current_index:].index(leaves[0]) + current_index
current_index = index
for i, leaf in enumerate(leaves):
if 'chunk_tags' not in sentence_feature[index + i]:
sentence_feature[index + i]['chunk_tags'] = []
sentence_feature[index + i]['chunk_tags'].append({'chunk_tag': node, 'height': 0,
'range': (index, index + len(leaves))})
for chunk_tag in sentence_feature[index + i]['chunk_tags']:
chunk_tag['height'] += 1
for token in sentence_feature:
if 'chunk_tags' not in token:
token['chunk_tags'] = [{'chunk_tag': 'ROOT', 'height': 1, 'range': (0, len(sentence_feature))}]
all_feature_data.append(sentence_feature)
return all_feature_data
class stanford_feature_processor:
def read_feature2count(self, data_path):
data_dir = data_path[:data_path.rfind('/')]
all_data = read_json(path.join(data_dir, 'train.stanford.json'))
gram2count = defaultdict(int)
pos_tag2count = defaultdict(int)
chunk_tag2count = defaultdict(int)
dep_tag2count = defaultdict(int)
for data in all_data:
tokens = data['tokens']
for token in tokens:
gram2count[token['word']] += 1
pos_tag2count[token['pos']] += 1
pos_tag2count[token['word'] + '_' + token['pos']] += 1
deparse = data['basicDependencies']
for word in deparse:
dep_tag2count[word['dep']] += 1
dep_tag2count[word['dependentGloss'] + '_' + word['dep']] += 1
coparse = Tree.fromstring(data['parse'])
for s in coparse.subtrees(lambda t: t.label() in chunk_pos):
leaves = s.leaves()
node = s.label()
chunk_tag2count[node] += 1
for leaf in leaves:
chunk_tag2count[leaf + '_' + node] += 1
chunk_tag2count['ROOT'] = 100
feature2count = {'gram2count': gram2count, 'pos_tag2count': pos_tag2count,
'chunk_tag2count': chunk_tag2count, 'dep_tag2count': dep_tag2count}
return feature2count
def read_features(self, data_path, flag):
data_dir = data_path[:data_path.rfind('/')]
all_data = read_json(path.join(data_dir, flag + '.stanford.json'))
all_feature_data = []
for data in all_data:
sentence_feature = []
sentence = ''
words = []
tokens = data['tokens']
for token in tokens:
feature_dict = {}
feature_dict['word'] = token['word']
words.append(token['word'])
sentence += token['word']
start_index = token['characterOffsetBegin']
end_index = token['characterOffsetEnd']
feature_dict['char_index'] = [i for i in range(start_index, end_index)]
feature_dict['pos'] = token['pos']
sentence_feature.append(feature_dict)
deparse = data['basicDependencies']
for dep in deparse:
dependent_index = dep['dependent'] - 1
sentence_feature[dependent_index]['dep'] = dep['dep']
sentence_feature[dependent_index]['governed_index'] = dep['governor'] - 1
c_parse = Tree.fromstring(data['parse'])
current_index = 0
for s in c_parse.subtrees(lambda t: t.label() in chunk_pos):
leaves = s.leaves()
if len(leaves) == 0:
continue
node = s.label()
index = words[current_index:].index(leaves[0]) + current_index
current_index = index
for i, leaf in enumerate(leaves):
if 'chunk_tags' not in sentence_feature[index + i]:
sentence_feature[index + i]['chunk_tags'] = []
sentence_feature[index + i]['chunk_tags'].append({'chunk_tag': node, 'height': 0,
'range': (index, index + len(leaves))})
for chunk_tag in sentence_feature[index + i]['chunk_tags']:
chunk_tag['height'] += 1
for token in sentence_feature:
if 'chunk_tags' not in token:
token['chunk_tags'] = [{'chunk_tag': 'ROOT', 'height': 1, 'range': (0, len(sentence_feature))}]
all_feature_data.append(sentence_feature)
return all_feature_data
def extract_ngram(all_sentences, min_feq=0, ngram_len=10):
n_gram_dict = {}
new_all_sentences = []
for sen in all_sentences:
str_sen = ''.join(sen)
new_sen = re.split(u'[^\u4e00-\u9fa50-9a-zA-Z]+', str_sen)
for s in new_sen:
if len(s) > 0:
new_all_sentences.append(s)
for sentence in new_all_sentences:
for i in range(len(sentence)):
for n in range(1, ngram_len+1):
if i + n > len(sentence):
break
n_gram = ''.join(sentence[i: i + n])
if n_gram not in n_gram_dict:
n_gram_dict[n_gram] = 1
else:
n_gram_dict[n_gram] += 1
new_ngram_dict = {gram: c for gram, c in n_gram_dict.items() if c > min_feq}
return new_ngram_dict
def renew_ngram_by_freq(all_sentences, ngram2count, min_feq, ngram_len=10):
new_ngram2count = {}
new_all_sentences = []
for sen in all_sentences:
str_sen = ''.join(sen)
new_sen = re.split(u'[^\u4e00-\u9fa50-9a-zA-Z]+', str_sen)
for s in new_sen:
if len(s) > 0:
new_all_sentences.append(s)
for sentence in new_all_sentences:
for i in range(len(sentence)):
for n in range(1, ngram_len+1):
if i + n > len(sentence):
break
n_gram = ''.join(sentence[i: i + n])
if n_gram not in ngram2count:
continue
if n_gram not in new_ngram2count:
new_ngram2count[n_gram] = 1
else:
new_ngram2count[n_gram] += 1
new_ngram_dict = {gram: c for gram, c in new_ngram2count.items() if c > min_feq}
return new_ngram_dict
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dataset",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
args = parser.parse_args()
base_min_freq = 1
av_threshold = 2
min_freq = base_min_freq
print('min freq: %d' % min_freq)
data_dir = path.join(DATA_DIR, args.dataset)
print(data_dir)
# getlabels(data_dir)
# get_word2id(data_dir)
# be(data_dir, 0, 10)
# oov_stat(data_dir, 'train')
# oov_stat(data_dir, 'dev')
# oov_stat(data_dir, 'test')
# request_features_from_stanford(data_dir, 'train')
# request_features_from_stanford(data_dir, 'dev')
# request_features_from_stanford(data_dir, 'test')
# request_features_from_stanford(data_dir, 'bc')
# request_features_from_stanford(data_dir, 'bn')
# request_features_from_stanford(data_dir, 'cs')
# request_features_from_stanford(data_dir, 'df')
# request_features_from_stanford(data_dir, 'mz')
# request_features_from_stanford(data_dir, 'nw')
# request_features_from_stanford(data_dir, 'sc')
# request_features_from_stanford(data_dir, 'wb')
# request_features_from_stanford('./data/POS/demo', 'demo')
# sfp = stanford_feature_processor(data_dir)
# sfp._pre_processing()
# sfp.read_features('train')
# sfp.read_features('test')
# sfp.feature_stat()
# bek = berkeley_feature_processor(data_dir)
# bek.request_knoledge('train')
# bek.request_knoledge('dev')
# bek.request_knoledge('test')
# bek.request_knoledge('demo')
# bek._pre_processing()
# bek.feature_stat()
# attentionn_gram_stat(data_dir, 0, 10)
print('')
# exit()