diff --git a/apis/python/setup.py b/apis/python/setup.py index bc3cf4818e..1943392ee0 100644 --- a/apis/python/setup.py +++ b/apis/python/setup.py @@ -333,6 +333,7 @@ def run(self): ], extras_require={ "dev": open("requirements_dev.txt").read(), + "spatial": ["tifffile", "pillow"], }, python_requires=">=3.8", cmdclass={"build_ext": build_ext, "bdist_wheel": bdist_wheel}, diff --git a/apis/python/src/tiledbsoma/experimental/__init__.py b/apis/python/src/tiledbsoma/experimental/__init__.py index 310f2f6de5..aa9e68ed5c 100644 --- a/apis/python/src/tiledbsoma/experimental/__init__.py +++ b/apis/python/src/tiledbsoma/experimental/__init__.py @@ -4,3 +4,9 @@ Do NOT merge this into main. """ + +from .ingest import from_visium + +__all__ = [ + "from_visium", +] diff --git a/apis/python/src/tiledbsoma/experimental/ingest.py b/apis/python/src/tiledbsoma/experimental/ingest.py new file mode 100644 index 0000000000..aeac3b4d88 --- /dev/null +++ b/apis/python/src/tiledbsoma/experimental/ingest.py @@ -0,0 +1,340 @@ +# Copyright (c) 2024 TileDB, Inc, +# +# Licensed under the MIT License. + +"""Experimental ingestion methods. + +This module contains experimental methods to generate Spatial SOMA artifacts +start from other formats. + +Do NOT merge into main. +""" + +import json +import pathlib +from typing import ( + TYPE_CHECKING, + Any, + Dict, + List, + Optional, + Sequence, + Tuple, + Type, + Union, +) + +import numpy as np +import pandas as pd +import pyarrow as pa +from PIL import Image +import scanpy + +from .. import Collection, DataFrame, DenseNDArray, Experiment, SparseNDArray +from .._constants import SOMA_JOINID +from .._tiledb_object import AnyTileDBObject +from .._types import IngestMode +from ..io import from_anndata +from ..io.ingest import ( + IngestCtx, + IngestionParams, + _create_or_open_collection, + _maybe_set, + _write_dataframe_impl, +) + +if TYPE_CHECKING: + from somacore.options import PlatformConfig + + from .._types import Path + from ..io._registration import ExperimentAmbientLabelMapping + from ..io.ingeset import AdditionalMetadata + from ..options import SOMATileDBContext + + +def from_visium( + experiment_uri: str, + input_path: "Path", + measurement_name: str, + scene_name: str, + *, + context: Optional["SOMATileDBContext"] = None, + platform_config: Optional["PlatformConfig"] = None, + obs_id_name: str = "obs_id", + var_id_name: str = "var_id", + X_layer_name: str = "data", + raw_X_layer_name: str = "data", + ingest_mode: IngestMode = "write", + use_relative_uri: Optional[bool] = None, + X_kind: Union[Type[SparseNDArray], Type[DenseNDArray]] = SparseNDArray, + registration_mapping: Optional["ExperimentAmbientLabelMapping"] = None, + uns_keys: Optional[Sequence[str]] = None, + additional_metadata: "AdditionalMetadata" = None, + use_raw_counts: bool = True, +) -> str: + """Reads a 10x Visium dataset and writes it to an :class:`Experiment`. + + This function is for ingesting Visium data for prototyping and testing the + proposed spatial design. + + TODO: Args list + + WARNING: This was only tested for Space Ranger version 2 output. + + Lifecycle: + Experimental + """ + + if ingest_mode != "write": + raise NotImplementedError( + f'the only ingest_mode currently supported is "write"; got "{ingest_mode}"' + ) + + # Get input file locations. + input_path = pathlib.Path(input_path) + + input_gene_expression = ( + input_path / "raw_feature_bc_matrix.h5" + if use_raw_counts + else input_path / "filtered_feature_bc_matrix.h5" + ) + + # TODO: Generalize - this is hard-coded for Space Ranger version 2 + input_tissue_positions = input_path / "spatial/tissue_positions.csv" + input_scale_factors = input_path / "spatial/scalefactors_json.json" + + # TODO: Generalize - hard-coded for Space Ranger version 2 + input_hires = input_path / "spatial/tissue_hires_image.png" + input_lowres = input_path / "spatial/tissue_lowres_image.png" + input_fullres = None + + # Create the + anndata = scanpy.read_10x_h5(input_gene_expression) + uri = from_anndata( + experiment_uri, + anndata, + measurement_name, + context=context, + platform_config=platform_config, + obs_id_name=obs_id_name, + var_id_name=var_id_name, + X_layer_name=X_layer_name, + raw_X_layer_name=raw_X_layer_name, + ingest_mode=ingest_mode, + use_relative_uri=use_relative_uri, + X_kind=X_kind, + registration_mapping=registration_mapping, + uns_keys=uns_keys, + additional_metadata=additional_metadata, + ) + + ingest_ctx: IngestCtx = { + "context": context, + "ingestion_params": IngestionParams(ingest_mode, registration_mapping), + "additional_metadata": additional_metadata, + } + + # Get JSON scale factors. + with open(input_scale_factors, mode="r", encoding="utf-8") as scale_factors_json: + scale_factors = json.load(scale_factors_json) + + # TODO: The `obs_df` should be in dataframe with only soma_joinid and obs_id. Not + # currently bothering to check/enforce this. + with Experiment.open(uri, mode="r", context=context) as experiment: + obs_df = experiment.obs.read().concat().to_pandas() + + # Add spatial information to the experiment. + with Experiment.open(uri, mode="w", context=context) as experiment: + spatial_uri = f"{uri}/spatial" + with _create_or_open_collection( + Collection[Collection[AnyTileDBObject]], spatial_uri, **ingest_ctx + ) as spatial: + _maybe_set( + experiment, "spatial", spatial, use_relative_uri=use_relative_uri + ) + scene_uri = f"{spatial_uri}/{scene_name}" + with _create_or_open_collection( + Collection[AnyTileDBObject], scene_uri, **ingest_ctx + ) as scene: + _maybe_set( + spatial, scene_name, scene, use_relative_uri=use_relative_uri + ) + + obs_locations_uri = f"{scene_uri}/obs_locations" + + # Write spot data and add to the scene. + with _write_visium_spot_dataframe( + obs_locations_uri, + input_tissue_positions, + scale_factors, + obs_df, + obs_id_name, + **ingest_ctx, + ) as obs_locations: + _maybe_set( + scene, + "obs_locations", + obs_locations, + use_relative_uri=use_relative_uri, + ) + + # Write image data and add to the scene. + images_uri = f"{scene_uri}/images" + with _write_visium_images( + images_uri, + scale_factors, + input_hires=input_hires, + input_lowres=input_lowres, + input_fullres=input_fullres, + use_relative_uri=use_relative_uri, + **ingest_ctx, + ) as images: + _maybe_set( + scene, "images", images, use_relative_uri=use_relative_uri + ) + return uri + + +def _write_visium_spot_dataframe( + df_uri: str, + input_tissue_positions: pathlib.Path, + scale_factors: Dict[str, Any], + obs_df: pd.DataFrame, + id_column_name: str, + *, + ingestion_params: IngestionParams, + additional_metadata: "AdditionalMetadata" = None, + platform_config: Optional["PlatformConfig"] = None, + context: Optional["SOMATileDBContext"] = None, +) -> DataFrame: + """TODO: Add _write_visium_spot_dataframe docs""" + # Create the + spot_radius = 0.5 * scale_factors["spot_diameter_fullres"] + df = ( + pd.read_csv(input_tissue_positions) + .rename( + columns={ + "barcode": id_column_name, + "pxl_col_in_fullres": "y", + "pxl_row_in_fullres": "x", + } + ) + .assign(_soma_geometry=np.double(spot_radius)) + ) + + df = pd.merge(obs_df, df, how="inner", on=id_column_name) + return _write_dataframe_impl( + df, + df_uri, + id_column_name, + ingestion_params=ingestion_params, + additional_metadata=additional_metadata, + index_column_names=("y", "x", SOMA_JOINID), + platform_config=platform_config, + context=context, + ) + + +def _write_visium_images( + uri: str, + scale_factors: Dict[str, Any], + *, + input_hires: Optional[pathlib.Path], + input_lowres: Optional[pathlib.Path], + input_fullres: Optional[pathlib.Path], + ingestion_params: IngestionParams, + additional_metadata: "AdditionalMetadata" = None, + platform_config: Optional["PlatformConfig"] = None, + context: Optional["SOMATileDBContext"] = None, + use_relative_uri: Optional[bool] = None, +) -> Collection[DenseNDArray]: + input_images: Dict[str, Tuple[pathlib.Path, List[float]]] = {} + if input_fullres is not None: + input_images["fullres"] = (input_fullres, [1.0, 1.0, 1.0]) + if input_hires is not None: + scale = 1.0 / scale_factors["tissue_hires_scalef"] + input_images["hires"] = (input_hires, [1.0, scale, scale]) + if input_lowres is not None: + scale = 1.0 / scale_factors["tissue_lowres_scalef"] + input_images["lowres"] = (input_lowres, [1.0, scale, scale]) + axes_metadata = [ + {"name": "c", "type": "channel"}, + {"name": "y", "type": "space", "unit": "micrometer"}, + {"name": "x", "type": "space", "unit": "micrometer"}, + ] + return _write_multiscale_images( + uri, + input_images, + axes_metadata=axes_metadata, + ingestion_params=ingestion_params, + additional_metadata=additional_metadata, + platform_config=platform_config, + context=context, + use_relative_uri=use_relative_uri, + ) + + +def _write_multiscale_images( + uri: str, + input_images: Dict[str, Tuple[pathlib.Path, List[float]]], + *, + axes_metadata: List[Dict[str, str]], + ingestion_params: IngestionParams, + additional_metadata: "AdditionalMetadata" = None, + platform_config: Optional["PlatformConfig"] = None, + context: Optional["SOMATileDBContext"] = None, + use_relative_uri: Optional[bool] = None, +) -> Collection[DenseNDArray]: + """TODO: Write full docs for this function + + TODO: Need to add in collection level metadata. In this case it will be + + """ + collection = _create_or_open_collection( + Collection[DenseNDArray], + uri, + ingestion_params=ingestion_params, + additional_metadata=additional_metadata, + context=context, + ) + datasets_metadata = [] + for image_name, (image_path, image_scales) in input_images.items(): + datasets_metadata.append( + { + "path": image_name, + "coordinateTransforms": [{"type": "scale", "scale": image_scales}], + } + ) + image_uri = f"{uri}/{image_name}" + + # TODO: Need to create new imaging type with dimensions 'c', 'y', 'x' + im = np.transpose(np.array(Image.open(image_path)), (2, 0, 1)) + image_array = DenseNDArray.create( + image_uri, + type=pa.from_numpy_dtype(im.dtype), + shape=im.shape, + platform_config=platform_config, + context=context, + ) + tensor = pa.Tensor.from_numpy(im) + image_array.write( + (slice(None), slice(None), slice(None)), + tensor, + platform_config=platform_config, + ) + _maybe_set( + collection, image_name, image_array, use_relative_uri=use_relative_uri + ) + metadata_blob = json.dumps( + { + "multiscales": [ + { + "version": "0.1.0-dev", + "name": "visium-example", + "datasets": datasets_metadata, + } + ] + } + ) + collection.metadata.update({"multiscales": metadata_blob}) + return collection diff --git a/apis/python/src/tiledbsoma/io/ingest.py b/apis/python/src/tiledbsoma/io/ingest.py index 9be37fd123..a9c17f9238 100644 --- a/apis/python/src/tiledbsoma/io/ingest.py +++ b/apis/python/src/tiledbsoma/io/ingest.py @@ -1171,6 +1171,7 @@ def _write_dataframe_impl( *, ingestion_params: IngestionParams, additional_metadata: AdditionalMetadata = None, + index_column_names: Sequence[str] = (SOMA_JOINID,), original_index_name: Optional[str] = None, platform_config: Optional[PlatformConfig] = None, context: Optional[SOMATileDBContext] = None, @@ -1198,6 +1199,7 @@ def _write_dataframe_impl( soma_df = DataFrame.create( df_uri, schema=arrow_table.schema, + index_column_names=index_column_names, platform_config=platform_config, context=context, )