diff --git a/apis/python/src/tiledbsc/util.py b/apis/python/src/tiledbsc/util.py index 0f05b7e58a..4b8ee0ae74 100644 --- a/apis/python/src/tiledbsc/util.py +++ b/apis/python/src/tiledbsc/util.py @@ -261,30 +261,6 @@ def X_and_ids_to_sparse_matrix( ) -# ---------------------------------------------------------------- -def triples_to_dense_df(sparse_df: pd.DataFrame, fillna=0.0) -> pd.DataFrame: - """ - Output from X dataframe reads is in "triples" format, e.g. two index columns `obs_id` and `var_id`, - and data column `value`. This is the default format, and is appropriate for large, possibly sparse matrices. - However, sometimes we want a dense matrix with `obs_id` row labels, `var_id` column labels, and `value` data. - This function produces that. - """ - assert isinstance(sparse_df, pd.DataFrame) - attr_name = sparse_df.keys()[0] - - index_names = sparse_df.index.names - assert len(index_names) == 2 - row_index_name = index_names[0] - col_index_name = index_names[1] - - # Make the index columns accessible as data columns. - sparse_df = sparse_df.reset_index() - - return sparse_df.pivot( - index=row_index_name, columns=col_index_name, values=attr_name - ).fillna(fillna) - - # ================================================================ class ETATracker: """