Skip to content

Commit

Permalink
Add experimental ingestor for Visium data
Browse files Browse the repository at this point in the history
  • Loading branch information
jp-dark committed Apr 18, 2024
1 parent a59b3e0 commit a98ae0b
Show file tree
Hide file tree
Showing 4 changed files with 349 additions and 0 deletions.
1 change: 1 addition & 0 deletions apis/python/setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -335,6 +335,7 @@ def run(self):
],
extras_require={
"dev": open("requirements_dev.txt").read(),
"spatial": ["tifffile", "pillow"],
},
python_requires=">=3.8",
cmdclass={"build_ext": build_ext, "bdist_wheel": bdist_wheel},
Expand Down
6 changes: 6 additions & 0 deletions apis/python/src/tiledbsoma/experimental/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,3 +4,9 @@
Do NOT merge this into main.
"""

from .ingest import from_visium

__all__ = [
"from_visium",
]
340 changes: 340 additions & 0 deletions apis/python/src/tiledbsoma/experimental/ingest.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,340 @@
# Copyright (c) 2024 TileDB, Inc,
#
# Licensed under the MIT License.

"""Experimental ingestion methods.
This module contains experimental methods to generate Spatial SOMA artifacts
start from other formats.
Do NOT merge into main.
"""

import json
import pathlib
from typing import (
TYPE_CHECKING,
Any,
Dict,
List,
Optional,
Sequence,
Tuple,
Type,
Union,
)

import numpy as np
import pandas as pd
import pyarrow as pa
import scanpy
from PIL import Image

from .. import Collection, DataFrame, DenseNDArray, Experiment, SparseNDArray
from .._constants import SOMA_JOINID
from .._tiledb_object import AnyTileDBObject
from .._types import IngestMode
from ..io import from_anndata
from ..io.ingest import (
IngestCtx,
IngestionParams,
_create_or_open_collection,
_maybe_set,
_write_dataframe_impl,
)

if TYPE_CHECKING:
from somacore.options import PlatformConfig

from .._types import Path
from ..io._registration import ExperimentAmbientLabelMapping
from ..io.ingeset import AdditionalMetadata
from ..options import SOMATileDBContext


def from_visium(
experiment_uri: str,
input_path: "Path",
measurement_name: str,
scene_name: str,
*,
context: Optional["SOMATileDBContext"] = None,
platform_config: Optional["PlatformConfig"] = None,
obs_id_name: str = "obs_id",
var_id_name: str = "var_id",
X_layer_name: str = "data",
raw_X_layer_name: str = "data",
ingest_mode: IngestMode = "write",
use_relative_uri: Optional[bool] = None,
X_kind: Union[Type[SparseNDArray], Type[DenseNDArray]] = SparseNDArray,
registration_mapping: Optional["ExperimentAmbientLabelMapping"] = None,
uns_keys: Optional[Sequence[str]] = None,
additional_metadata: "AdditionalMetadata" = None,
use_raw_counts: bool = True,
) -> str:
"""Reads a 10x Visium dataset and writes it to an :class:`Experiment`.
This function is for ingesting Visium data for prototyping and testing the
proposed spatial design.
TODO: Args list
WARNING: This was only tested for Space Ranger version 2 output.
Lifecycle:
Experimental
"""

if ingest_mode != "write":
raise NotImplementedError(
f'the only ingest_mode currently supported is "write"; got "{ingest_mode}"'
)

# Get input file locations.
input_path = pathlib.Path(input_path)

input_gene_expression = (
input_path / "raw_feature_bc_matrix.h5"
if use_raw_counts
else input_path / "filtered_feature_bc_matrix.h5"
)

# TODO: Generalize - this is hard-coded for Space Ranger version 2
input_tissue_positions = input_path / "spatial/tissue_positions.csv"
input_scale_factors = input_path / "spatial/scalefactors_json.json"

# TODO: Generalize - hard-coded for Space Ranger version 2
input_hires = input_path / "spatial/tissue_hires_image.png"
input_lowres = input_path / "spatial/tissue_lowres_image.png"
input_fullres = None

# Create the
anndata = scanpy.read_10x_h5(input_gene_expression)
uri = from_anndata(
experiment_uri,
anndata,
measurement_name,
context=context,
platform_config=platform_config,
obs_id_name=obs_id_name,
var_id_name=var_id_name,
X_layer_name=X_layer_name,
raw_X_layer_name=raw_X_layer_name,
ingest_mode=ingest_mode,
use_relative_uri=use_relative_uri,
X_kind=X_kind,
registration_mapping=registration_mapping,
uns_keys=uns_keys,
additional_metadata=additional_metadata,
)

ingest_ctx: IngestCtx = {
"context": context,
"ingestion_params": IngestionParams(ingest_mode, registration_mapping),
"additional_metadata": additional_metadata,
}

# Get JSON scale factors.
with open(input_scale_factors, mode="r", encoding="utf-8") as scale_factors_json:
scale_factors = json.load(scale_factors_json)

# TODO: The `obs_df` should be in dataframe with only soma_joinid and obs_id. Not
# currently bothering to check/enforce this.
with Experiment.open(uri, mode="r", context=context) as experiment:
obs_df = experiment.obs.read().concat().to_pandas()

# Add spatial information to the experiment.
with Experiment.open(uri, mode="w", context=context) as experiment:
spatial_uri = f"{uri}/spatial"
with _create_or_open_collection(
Collection[Collection[AnyTileDBObject]], spatial_uri, **ingest_ctx
) as spatial:
_maybe_set(
experiment, "spatial", spatial, use_relative_uri=use_relative_uri
)
scene_uri = f"{spatial_uri}/{scene_name}"
with _create_or_open_collection(
Collection[AnyTileDBObject], scene_uri, **ingest_ctx
) as scene:
_maybe_set(
spatial, scene_name, scene, use_relative_uri=use_relative_uri
)

obs_locations_uri = f"{scene_uri}/obs_locations"

# Write spot data and add to the scene.
with _write_visium_spot_dataframe(
obs_locations_uri,
input_tissue_positions,
scale_factors,
obs_df,
obs_id_name,
**ingest_ctx,
) as obs_locations:
_maybe_set(
scene,
"obs_locations",
obs_locations,
use_relative_uri=use_relative_uri,
)

# Write image data and add to the scene.
images_uri = f"{scene_uri}/images"
with _write_visium_images(
images_uri,
scale_factors,
input_hires=input_hires,
input_lowres=input_lowres,
input_fullres=input_fullres,
use_relative_uri=use_relative_uri,
**ingest_ctx,
) as images:
_maybe_set(
scene, "images", images, use_relative_uri=use_relative_uri
)
return uri


def _write_visium_spot_dataframe(
df_uri: str,
input_tissue_positions: pathlib.Path,
scale_factors: Dict[str, Any],
obs_df: pd.DataFrame,
id_column_name: str,
*,
ingestion_params: IngestionParams,
additional_metadata: "AdditionalMetadata" = None,
platform_config: Optional["PlatformConfig"] = None,
context: Optional["SOMATileDBContext"] = None,
) -> DataFrame:
"""TODO: Add _write_visium_spot_dataframe docs"""
# Create the
spot_radius = 0.5 * scale_factors["spot_diameter_fullres"]
df = (
pd.read_csv(input_tissue_positions)
.rename(
columns={
"barcode": id_column_name,
"pxl_col_in_fullres": "y",
"pxl_row_in_fullres": "x",
}
)
.assign(_soma_geometry=np.double(spot_radius))
)

df = pd.merge(obs_df, df, how="inner", on=id_column_name)
return _write_dataframe_impl(
df,
df_uri,
id_column_name,
ingestion_params=ingestion_params,
additional_metadata=additional_metadata,
index_column_names=("y", "x", SOMA_JOINID),
platform_config=platform_config,
context=context,
)


def _write_visium_images(
uri: str,
scale_factors: Dict[str, Any],
*,
input_hires: Optional[pathlib.Path],
input_lowres: Optional[pathlib.Path],
input_fullres: Optional[pathlib.Path],
ingestion_params: IngestionParams,
additional_metadata: "AdditionalMetadata" = None,
platform_config: Optional["PlatformConfig"] = None,
context: Optional["SOMATileDBContext"] = None,
use_relative_uri: Optional[bool] = None,
) -> Collection[DenseNDArray]:
input_images: Dict[str, Tuple[pathlib.Path, List[float]]] = {}
if input_fullres is not None:
input_images["fullres"] = (input_fullres, [1.0, 1.0, 1.0])
if input_hires is not None:
scale = 1.0 / scale_factors["tissue_hires_scalef"]
input_images["hires"] = (input_hires, [1.0, scale, scale])
if input_lowres is not None:
scale = 1.0 / scale_factors["tissue_lowres_scalef"]
input_images["lowres"] = (input_lowres, [1.0, scale, scale])
axes_metadata = [
{"name": "c", "type": "channel"},
{"name": "y", "type": "space", "unit": "micrometer"},
{"name": "x", "type": "space", "unit": "micrometer"},
]
return _write_multiscale_images(
uri,
input_images,
axes_metadata=axes_metadata,
ingestion_params=ingestion_params,
additional_metadata=additional_metadata,
platform_config=platform_config,
context=context,
use_relative_uri=use_relative_uri,
)


def _write_multiscale_images(
uri: str,
input_images: Dict[str, Tuple[pathlib.Path, List[float]]],
*,
axes_metadata: List[Dict[str, str]],
ingestion_params: IngestionParams,
additional_metadata: "AdditionalMetadata" = None,
platform_config: Optional["PlatformConfig"] = None,
context: Optional["SOMATileDBContext"] = None,
use_relative_uri: Optional[bool] = None,
) -> Collection[DenseNDArray]:
"""TODO: Write full docs for this function
TODO: Need to add in collection level metadata. In this case it will be
"""
collection = _create_or_open_collection(
Collection[DenseNDArray],
uri,
ingestion_params=ingestion_params,
additional_metadata=additional_metadata,
context=context,
)
datasets_metadata = []
for image_name, (image_path, image_scales) in input_images.items():
datasets_metadata.append(
{
"path": image_name,
"coordinateTransforms": [{"type": "scale", "scale": image_scales}],
}
)
image_uri = f"{uri}/{image_name}"

# TODO: Need to create new imaging type with dimensions 'c', 'y', 'x'
im = np.transpose(np.array(Image.open(image_path)), (2, 0, 1))
image_array = DenseNDArray.create(
image_uri,
type=pa.from_numpy_dtype(im.dtype),
shape=im.shape,
platform_config=platform_config,
context=context,
)
tensor = pa.Tensor.from_numpy(im)
image_array.write(
(slice(None), slice(None), slice(None)),
tensor,
platform_config=platform_config,
)
_maybe_set(
collection, image_name, image_array, use_relative_uri=use_relative_uri
)
metadata_blob = json.dumps(
{
"multiscales": [
{
"version": "0.1.0-dev",
"name": "visium-example",
"datasets": datasets_metadata,
}
]
}
)
collection.metadata.update({"multiscales": metadata_blob})
return collection
2 changes: 2 additions & 0 deletions apis/python/src/tiledbsoma/io/ingest.py
Original file line number Diff line number Diff line change
Expand Up @@ -1172,6 +1172,7 @@ def _write_dataframe_impl(
*,
ingestion_params: IngestionParams,
additional_metadata: AdditionalMetadata = None,
index_column_names: Sequence[str] = (SOMA_JOINID,),
original_index_name: Optional[str] = None,
platform_config: Optional[PlatformConfig] = None,
context: Optional[SOMATileDBContext] = None,
Expand All @@ -1197,6 +1198,7 @@ def _write_dataframe_impl(
soma_df = DataFrame.create(
df_uri,
schema=arrow_table.schema,
index_column_names=index_column_names,
platform_config=platform_config,
context=context,
)
Expand Down

0 comments on commit a98ae0b

Please sign in to comment.