-
Notifications
You must be signed in to change notification settings - Fork 5
/
PJ_healpix.c
572 lines (571 loc) · 18.5 KB
/
PJ_healpix.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
/******************************************************************************
* Project: PROJ.4
* Purpose: Implementation of the HEALPix and rHEALPix projections.
* For background see <http://code.scenzgrid.org/index.php/p/scenzgrid-py/source/tree/master/docs/rhealpix_dggs.pdf>.
* Authors: Alex Raichev ([email protected])
* Michael Speth ([email protected])
* Notes: Raichev implemented these projections in Python and
* Speth translated them into C here.
******************************************************************************
* Copyright (c) 2001, Thomas Flemming, [email protected]
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substcounteral portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*****************************************************************************/
# define PROJ_PARMS__ \
int north_square; \
int south_square; \
double qp; \
double *apa;
# define PJ_LIB__
# include <projects.h>
PROJ_HEAD(healpix, "HEALPix") "\n\tSph., Ellps.";
PROJ_HEAD(rhealpix, "rHEALPix") "\n\tSph., Ellps.\n\tnorth_square= south_square=";
# include <stdio.h>
/* Matrix for counterclockwise rotation by pi/2: */
# define R1 {{ 0,-1},{ 1, 0}}
/* Matrix for counterclockwise rotation by pi: */
# define R2 {{-1, 0},{ 0,-1}}
/* Matrix for counterclockwise rotation by 3*pi/2: */
# define R3 {{ 0, 1},{-1, 0}}
/* Identity matrix */
# define IDENT {{1, 0},{0, 1}}
/* IDENT, R1, R2, R3, R1 inverse, R2 inverse, R3 inverse:*/
# define ROT {IDENT, R1, R2, R3, R3, R2, R1}
/* Fuzz to handle rounding errors: */
# define EPS 1e-15
typedef struct {
int cn; /* An integer 0--3 indicating the position of the polar cap. */
double x, y; /* Coordinates of the pole point (point of most extreme latitude on the polar caps). */
enum Region {north, south, equatorial} region;
} CapMap;
typedef struct {
double x, y;
} Point;
double rot[7][2][2] = ROT;
/**
* Returns the sign of the double.
* @param v the parameter whose sign is returned.
* @return 1 for positive number, -1 for negative, and 0 for zero.
**/
double pj_sign (double v) {
return v > 0 ? 1 : (v < 0 ? -1 : 0);
}
/**
* Return the index of the matrix in ROT.
* @param index ranges from -3 to 3.
*/
static int get_rotate_index(int index) {
switch(index) {
case 0:
return 0;
case 1:
return 1;
case 2:
return 2;
case 3:
return 3;
case -1:
return 4;
case -2:
return 5;
case -3:
return 6;
}
return 0;
}
/**
* Return 1 if point (testx, testy) lies in the interior of the polygon
* determined by the vertices in vert, and return 0 otherwise.
* See http://paulbourke.net/geometry/polygonmesh/ for more details.
* @param nvert the number of vertices in the polygon.
* @param vert the (x, y)-coordinates of the polygon's vertices
**/
static int pnpoly(int nvert, double vert[][2], double testx, double testy) {
int i, c = 0;
int counter = 0;
double xinters;
Point p1, p2;
/* Check for boundrary cases */
for (i = 0; i < nvert; i++) {
if (testx == vert[i][0] && testy == vert[i][1]) {
return 1;
}
}
p1.x = vert[0][0];
p1.y = vert[0][1];
for (i = 1; i < nvert; i++) {
p2.x = vert[i % nvert][0];
p2.y = vert[i % nvert][1];
if (testy > MIN(p1.y, p2.y)) {
if (testy <= MAX(p1.y, p2.y)) {
if (testx <= MAX(p1.x, p2.x)) {
if (p1.y != p2.y) {
xinters = (testy-p1.y)*(p2.x-p1.x)/(p2.y-p1.y)+p1.x;
if (p1.x == p2.x || testx <= xinters) {
counter++;
}
}
}
}
}
p1 = p2;
}
if (counter % 2 == 0) {
return 0;
} else {
return 1;
}
return c;
}
/**
* Return 1 if (x, y) lies in (the interior or boundary of) the image of the
* HEALPix projection (in case proj=0) or in the image the rHEALPix projection
* (in case proj=1), and return 0 otherwise.
* @param north_square the position of the north polar square (rHEALPix only)
* @param south_square the position of the south polar square (rHEALPix only)
**/
int in_image(double x, double y, int proj, int north_square, int south_square) {
if (proj == 0) {
double healpixVertsJit[][2] = {
{-1.0*PI- EPS, PI/4.0},
{-3.0*PI/4.0, PI/2.0 + EPS},
{-1.0*PI/2.0, PI/4.0 + EPS},
{-1.0*PI/4.0, PI/2.0 + EPS},
{0.0, PI/4.0 + EPS},
{PI/4.0, PI/2.0 + EPS},
{PI/2.0, PI/4.0 + EPS},
{3.0*PI/4.0, PI/2.0 + EPS},
{PI+ EPS, PI/4.0},
{PI+ EPS, -1.0*PI/4.0},
{3.0*PI/4.0, -1.0*PI/2.0 - EPS},
{PI/2.0, -1.0*PI/4.0 - EPS},
{PI/4.0, -1.0*PI/2.0 - EPS},
{0.0, -1.0*PI/4.0 - EPS},
{-1.0*PI/4.0, -1.0*PI/2.0 - EPS},
{-1.0*PI/2.0, -1.0*PI/4.0 - EPS},
{-3.0*PI/4.0, -1.0*PI/2.0 - EPS},
{-1.0*PI - EPS, -1.0*PI/4.0}
};
return pnpoly((int)sizeof(healpixVertsJit)/
sizeof(healpixVertsJit[0]), healpixVertsJit, x, y);
} else {
double rhealpixVertsJit[][2] = {
{-1.0*PI - EPS, PI/4.0 + EPS},
{-1.0*PI + north_square*PI/2.0- EPS, PI/4.0 + EPS},
{-1.0*PI + north_square*PI/2.0- EPS, 3*PI/4.0 + EPS},
{-1.0*PI + (north_square + 1.0)*PI/2.0 + EPS, 3*PI/4.0 + EPS},
{-1.0*PI + (north_square + 1.0)*PI/2.0 + EPS, PI/4.0 + EPS},
{PI + EPS, PI/4.0 + EPS},
{PI + EPS, -1.0*PI/4.0 - EPS},
{-1.0*PI + (south_square + 1.0)*PI/2.0 + EPS, -1.0*PI/4.0 - EPS},
{-1.0*PI + (south_square + 1.0)*PI/2.0 + EPS, -3.0*PI/4.0 - EPS},
{-1.0*PI + south_square*PI/2.0 - EPS, -3.0*PI/4.0 - EPS},
{-1.0*PI + south_square*PI/2.0 - EPS, -1.0*PI/4.0 - EPS},
{-1.0*PI - EPS, -1.0*PI/4.0 - EPS}};
return pnpoly((int)sizeof(rhealpixVertsJit)/
sizeof(rhealpixVertsJit[0]), rhealpixVertsJit, x, y);
}
}
/**
* Return the authalic latitude of latitude alpha (if inverse=0) or
* return the approximate latitude of authalic latitude alpha (if inverse=1).
* P contains the relavent ellipsoid parameters.
**/
double auth_lat(PJ *P, double alpha, int inverse) {
if (inverse == 0) {
/* Authalic latitude. */
double q = pj_qsfn(sin(alpha), P->e, 1.0 - P->es);
double qp = P->qp;
double ratio = q/qp;
if (fabsl(ratio) > 1) {
/* Rounding error. */
ratio = pj_sign(ratio);
}
return asin(ratio);
} else {
/* Approximation to inverse authalic latitude. */
return pj_authlat(alpha, P->apa);
}
}
/**
* Return the HEALPix projection of the longitude-latitude point lp on
* the unit sphere.
**/
XY healpix_sphere(LP lp) {
double lam = lp.lam;
double phi = lp.phi;
double phi0 = asin(2.0/3.0);
XY xy;
/* equatorial region */
if ( fabsl(phi) <= phi0) {
xy.x = lam;
xy.y = 3.0*PI/8.0*sin(phi);
} else {
double lamc;
double sigma = sqrt(3.0*(1 - fabsl(sin(phi))));
double cn = floor(2*lam / PI + 2);
if (cn >= 4) {
cn = 3;
}
lamc = -3*PI/4 + (PI/2)*cn;
xy.x = lamc + (lam - lamc)*sigma;
xy.y = pj_sign(phi)*PI/4*(2 - sigma);
}
return xy;
}
/**
* Return the inverse of healpix_sphere().
**/
LP healpix_sphere_inverse(XY xy) {
LP lp;
double x = xy.x;
double y = xy.y;
double y0 = PI/4.0;
/* Equatorial region. */
if (fabsl(y) <= y0) {
lp.lam = x;
lp.phi = asin(8.0*y/(3.0*PI));
} else if (fabsl(y) < PI/2.0) {
double cn = floor(2.0*x/PI + 2.0);
double xc, tau;
if (cn >= 4) {
cn = 3;
}
xc = -3.0*PI/4.0 + (PI/2.0)*cn;
tau = 2.0 - 4.0*fabsl(y)/PI;
lp.lam = xc + (x - xc)/tau;
lp.phi = pj_sign(y)*asin(1.0 - pow(tau , 2.0)/3.0);
} else {
lp.lam = -1.0*PI;
lp.phi = pj_sign(y)*PI/2.0;
}
return (lp);
}
/**
* Return the vector sum a + b, where a and b are 2-dimensional vectors.
* @param ret holds a + b.
**/
static void vector_add(double a[2], double b[2], double *ret) {
int i;
for(i = 0; i < 2; i++) {
ret[i] = a[i] + b[i];
}
}
/**
* Return the vector difference a - b, where a and b are 2-dimensional vectors.
* @param ret holds a - b.
**/
static void vector_sub(double a[2], double b[2], double*ret) {
int i;
for(i = 0; i < 2; i++) {
ret[i] = a[i] - b[i];
}
}
/**
* Return the 2 x 1 matrix product a*b, where a is a 2 x 2 matrix and
* b is a 2 x 1 matrix.
* @param ret holds a*b.
**/
static void dot_product(double a[2][2], double b[2], double *ret) {
int i, j;
int length = 2;
for(i = 0; i < length; i++) {
ret[i] = 0;
for(j = 0; j < length; j++) {
ret[i] += a[i][j]*b[j];
}
}
}
/**
* Return the number of the polar cap, the pole point coordinates, and
* the region that (x, y) lies in.
* If inverse=0, then assume (x,y) lies in the image of the HEALPix
* projection of the unit sphere.
* If inverse=1, then assume (x,y) lies in the image of the
* (north_square, south_square)-rHEALPix projection of the unit sphere.
**/
static CapMap get_cap(double x, double y, int north_square, int south_square,
int inverse) {
CapMap capmap;
double c;
capmap.x = x;
capmap.y = y;
if (inverse == 0) {
if (y > PI/4.0) {
capmap.region = north;
c = PI/2.0;
} else if (y < -1*PI/4.0) {
capmap.region = south;
c = -1*PI/2.0;
} else {
capmap.region = equatorial;
capmap.cn = 0;
return capmap;
}
/* polar region */
if (x < -1*PI/2.0) {
capmap.cn = 0;
capmap.x = (-1*3.0*PI/4.0);
capmap.y = c;
} else if (x >= -1*PI/2.0 && x < 0) {
capmap.cn = 1;
capmap.x = -1*PI/4.0;
capmap.y = c;
} else if (x >= 0 && x < PI/2.0) {
capmap.cn = 2;
capmap.x = PI/4.0;
capmap.y = c;
} else {
capmap.cn = 3;
capmap.x = 3.0*PI/4.0;
capmap.y = c;
}
return capmap;
} else {
double eps;
if (y > PI/4.0) {
capmap.region = north;
capmap.x = (-3.0*PI/4.0 + north_square*PI/2.0);
capmap.y = PI/2.0;
x = x - north_square*PI/2.0;
} else if (y < -1*PI/4.0) {
capmap.region = south;
capmap.x = (-3.0*PI/4.0 + south_square*PI/2);
capmap.y = -1*PI/2.0;
x = x - south_square*PI/2.0;
} else {
capmap.region = equatorial;
capmap.cn = 0;
return capmap;
}
/* Polar Region, find the HEALPix polar cap number that
x, y moves to when rHEALPix polar square is disassembled. */
eps = 1e-15; /* Kludge. Fuzz to avoid some rounding errors. */
if (capmap.region == north) {
if (y >= -1*x - PI/4.0 - eps && y < x + 5.0*PI/4.0 - eps) {
capmap.cn = (north_square + 1) % 4;
} else if (y > -1*x -1*PI/4.0 + eps && y >= x + 5.0*PI/4.0 - eps) {
capmap.cn = (north_square + 2) % 4;
} else if (y <= -1*x -1*PI/4.0 + eps && y > x + 5.0*PI/4.0 + eps) {
capmap.cn = (north_square + 3) % 4;
} else {
capmap.cn = north_square;
}
} else if (capmap.region == south) {
if (y <= x + PI/4.0 + eps && y > -1*x - 5.0*PI/4 + eps) {
capmap.cn = (south_square + 1) % 4;
} else if (y < x + PI/4.0 - eps && y <= -1*x - 5.0*PI/4.0 + eps) {
capmap.cn = (south_square + 2) % 4;
} else if (y >= x + PI/4.0 - eps && y < -1*x - 5.0*PI/4.0 - eps) {
capmap.cn = (south_square + 3) % 4;
} else {
capmap.cn = south_square;
}
}
return capmap;
}
}
/**
* Rearrange point (x, y) in the HEALPix projection by
* combining the polar caps into two polar squares.
* Put the north polar square in position north_square and
* the south polar square in position south_square.
* If inverse=1, then uncombine the polar caps.
* @param north_square integer between 0 and 3.
* @param south_square integer between 0 and 3.
**/
static XY combine_caps(double x, double y, int north_square, int south_square,
int inverse) {
XY xy;
double v[2];
double a[2];
double vector[2];
double v_min_c[2];
double ret_dot[2];
CapMap capmap = get_cap(x, y, north_square, south_square, inverse);
if (capmap.region == equatorial) {
xy.x = capmap.x;
xy.y = capmap.y;
return xy;
}
v[0] = x;
v[1] = y;
if (inverse == 0) {
/* Rotate (x, y) about its polar cap tip and then translate it to
north_square or south_square. */
int pole = 0;
double (*tmpRot)[2];
double c[2] = {capmap.x, capmap.y};
if (capmap.region == north) {
pole = north_square;
a[0] = (-3.0*PI/4.0 + pole*PI/2);
a[1] = (PI/2.0 + pole*0);
tmpRot = rot[get_rotate_index(capmap.cn - pole)];
vector_sub(v, c, v_min_c);
dot_product(tmpRot, v_min_c, ret_dot);
vector_add(ret_dot, a, vector);
} else {
pole = south_square;
a[0] = (-3.0*PI/4.0 + pole*PI/2);
a[1] = (PI/-2.0 + pole*0);
tmpRot = rot[get_rotate_index(-1*(capmap.cn - pole))];
vector_sub(v, c, v_min_c);
dot_product(tmpRot, v_min_c, ret_dot);
vector_add(ret_dot, a, vector);
}
xy.x = vector[0];
xy.y = vector[1];
return xy;
} else {
/* Inverse function.
Unrotate (x, y) and then translate it back. */
int pole = 0;
double (*tmpRot)[2];
double c[2] = {capmap.x, capmap.y};
/* disassemble */
if (capmap.region == north) {
pole = north_square;
a[0] = (-3.0*PI/4.0 + capmap.cn*PI/2);
a[1] = (PI/2.0 + capmap.cn*0);
tmpRot = rot[get_rotate_index(-1*(capmap.cn - pole))];
vector_sub(v, c, v_min_c);
dot_product(tmpRot, v_min_c, ret_dot);
vector_add(ret_dot, a, vector);
} else {
pole = south_square;
a[0] = (-3.0*PI/4.0 + capmap.cn*PI/2);
a[1] = (PI/-2.0 + capmap.cn*0);
tmpRot = rot[get_rotate_index(capmap.cn - pole)];
vector_sub(v, c, v_min_c);
dot_product(tmpRot, v_min_c, ret_dot);
vector_add(ret_dot, a, vector);
}
xy.x = vector[0];
xy.y = vector[1];
return xy;
}
}
FORWARD(s_healpix_forward); /* sphere */
(void) P;
(void) xy;
return healpix_sphere(lp);
}
FORWARD(e_healpix_forward); /* ellipsoid */
(void) xy;
lp.phi = auth_lat(P, lp.phi, 0);
return healpix_sphere(lp);
}
INVERSE(s_healpix_inverse); /* sphere */
/* Check whether (x, y) lies in the HEALPix image */
if (in_image(xy.x, xy.y, 0, 0, 0) == 0) {
lp.lam = HUGE_VAL;
lp.phi = HUGE_VAL;
pj_ctx_set_errno(P->ctx, -15);
return lp;
}
return healpix_sphere_inverse(xy);
}
INVERSE(e_healpix_inverse); /* ellipsoid */
/* Check whether (x, y) lies in the HEALPix image. */
if (in_image(xy.x, xy.y, 0, 0, 0) == 0) {
lp.lam = HUGE_VAL;
lp.phi = HUGE_VAL;
pj_ctx_set_errno(P->ctx, -15);
return lp;
}
lp = healpix_sphere_inverse(xy);
lp.phi = auth_lat(P, lp.phi, 1);
return (lp);
}
FORWARD(s_rhealpix_forward); /* sphere */
xy = healpix_sphere(lp);
return combine_caps(xy.x, xy.y, P->north_square, P->south_square, 0);
}
FORWARD(e_rhealpix_forward); /* ellipsoid */
lp.phi = auth_lat(P, lp.phi, 0);
xy = healpix_sphere(lp);
return combine_caps(xy.x, xy.y, P->north_square, P->south_square, 0);
}
INVERSE(s_rhealpix_inverse); /* sphere */
/* Check whether (x, y) lies in the rHEALPix image. */
if (in_image(xy.x, xy.y, 1, P->north_square, P->south_square) == 0) {
lp.lam = HUGE_VAL;
lp.phi = HUGE_VAL;
pj_ctx_set_errno(P->ctx, -15);
return lp;
}
xy = combine_caps(xy.x, xy.y, P->north_square, P->south_square, 1);
return healpix_sphere_inverse(xy);
}
INVERSE(e_rhealpix_inverse); /* ellipsoid */
/* Check whether (x, y) lies in the rHEALPix image. */
if (in_image(xy.x, xy.y, 1, P->north_square, P->south_square) == 0) {
lp.lam = HUGE_VAL;
lp.phi = HUGE_VAL;
pj_ctx_set_errno(P->ctx, -15);
return lp;
}
xy = combine_caps(xy.x, xy.y, P->north_square, P->south_square, 1);
lp = healpix_sphere_inverse(xy);
lp.phi = auth_lat(P, lp.phi, 1);
return lp;
}
FREEUP;
if (P) {
if (P->apa)
pj_dalloc(P->apa);
pj_dalloc(P);
}
}
ENTRY1(healpix, apa)
if (P->es) {
P->apa = pj_authset(P->es); /* For auth_lat(). */
P->qp = pj_qsfn(1.0, P->e, P->one_es); /* For auth_lat(). */
P->a = P->a*sqrt(0.5*P->qp); /* Set P->a to authalic radius. */
P->ra = 1.0/P->a;
P->fwd = e_healpix_forward;
P->inv = e_healpix_inverse;
} else {
P->fwd = s_healpix_forward;
P->inv = s_healpix_inverse;
}
ENDENTRY(P)
ENTRY1(rhealpix, apa)
P->north_square = pj_param(P->ctx, P->params,"inorth_square").i;
P->south_square = pj_param(P->ctx, P->params,"isouth_square").i;
/* Check for valid north_square and south_square inputs. */
if (P->north_square < 0 || P->north_square > 3) {
E_ERROR(-47);
}
if (P->south_square < 0 || P->south_square > 3) {
E_ERROR(-47);
}
if (P->es) {
P->apa = pj_authset(P->es); /* For auth_lat(). */
P->qp = pj_qsfn(1.0, P->e, P->one_es); /* For auth_lat(). */
P->a = P->a*sqrt(0.5*P->qp); /* Set P->a to authalic radius. */
P->ra = 1.0/P->a;
P->fwd = e_rhealpix_forward;
P->inv = e_rhealpix_inverse;
} else {
P->fwd = s_rhealpix_forward;
P->inv = s_rhealpix_inverse;
}
ENDENTRY(P)