-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
396 lines (313 loc) · 11.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
import numpy as np
import cv2
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from torch.utils.data import Dataset as BaseDataset
import albumentations as albu
import torch
import numpy as np
import segmentation_models_pytorch as smp
from segmentation_models_pytorch.utils.train import ValidEpoch
import segmentation_models_pytorch.utils
from torch.optim.lr_scheduler import StepLR
# helper function for data visualization
def visualize(fig_name=None, result=False, **images):
"""PLot images in one row."""
n = len(images)
plt.figure(figsize=(16, 5))
for i, (name, image) in enumerate(images.items()):
plt.subplot(1, n, i + 1)
plt.xticks([])
plt.yticks([])
plt.title(' '.join(name.split('_')).title())
if result and i>0:
plt.imshow(image, cmap='gray')
else:
plt.imshow(image)
# plt.show()
if fig_name is None:
fig_name = "tmp.png"
plt.savefig(fig_name)
class Dataset(BaseDataset):
"""CO2wounds Dataset. Read images, apply augmentation and preprocessing transformations.
Args:
images_dir (str): path to images folder
masks_dir (str): path to segmentation masks folder
class_values (list): values of classes to extract from segmentation mask
augmentation (albumentations.Compose): data transfromation pipeline
(e.g. flip, scale, etc.)
preprocessing (albumentations.Compose): data preprocessing
(e.g. noralization, shape manipulation, etc.)
"""
CLASSES = ['background', 'wound']
def __init__(
self,
images_dir,
masks_dir,
classes=None,
augmentation=None,
preprocessing=None,
):
self.ids = os.listdir(images_dir)
self.images = [os.path.join(images_dir, image_id) for image_id in self.ids]
self.masks = [os.path.join(masks_dir, image_id.split(".")[0]+".png") for image_id in self.ids]
# convert str names to class values on masks
self.class_values = [self.CLASSES.index(cls.lower()) for cls in classes]
self.augmentation = augmentation
self.preprocessing = preprocessing
def __getitem__(self, i):
# read data
image = cv2.imread(self.images[i])
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
mask = cv2.imread(self.masks[i], 0)
masks = [(mask == v) for v in self.class_values]
mask = np.stack(masks, axis=-1).astype('float')
# apply augmentations
if self.augmentation:
sample = self.augmentation(image=image, mask=mask)
image, mask = sample['image'], sample['mask']
# apply preprocessing
if self.preprocessing:
sample = self.preprocessing(image=image, mask=mask)
image, mask = sample['image'], sample['mask']
return image, mask
def __len__(self):
return len(self.ids)
def get_training_augmentation():
train_transform = [
albu.HorizontalFlip(p=0.5),
albu.ShiftScaleRotate(scale_limit=0.5, rotate_limit=0, shift_limit=0.1, p=1, border_mode=0),
albu.PadIfNeeded(min_height=320, min_width=320, always_apply=True, border_mode=0),
albu.RandomCrop(height=320, width=320, always_apply=True),
albu.IAAAdditiveGaussianNoise(p=0.2),
albu.IAAPerspective(p=0.5),
albu.OneOf(
[
albu.CLAHE(p=1),
albu.RandomBrightness(p=1),
albu.RandomGamma(p=1),
],
p=0.9,
),
albu.OneOf(
[
albu.IAASharpen(p=1),
albu.Blur(blur_limit=3, p=1),
albu.MotionBlur(blur_limit=3, p=1),
],
p=0.9,
),
albu.OneOf(
[
albu.RandomContrast(p=1),
albu.HueSaturationValue(p=1),
],
p=0.9,
),
]
return albu.Compose(train_transform)
# def get_validation_augmentation():
# """Add paddings to make image shape divisible by 32"""
# test_transform = [
# albu.PadIfNeeded(384, 480, )
# ]
# return albu.Compose(test_transform)
def get_validation_augmentation():
"""Adaptively add paddings to make image shape divisible by 32"""
test_transform = [
albu.LongestMaxSize(max_size=384, always_apply=True),
albu.PadIfNeeded(min_height=384, min_width=480, always_apply=True, border_mode=0, value=0),
]
return albu.Compose(test_transform)
def to_tensor(x, **kwargs):
return x.transpose(2, 0, 1).astype('float32')
def get_preprocessing(preprocessing_fn):
"""Construct preprocessing transform
Args:
preprocessing_fn (callbale): data normalization function
(can be specific for each pretrained neural network)
Return:
transform: albumentations.Compose
"""
_transform = [
albu.Lambda(image=preprocessing_fn),
albu.Lambda(image=to_tensor, mask=to_tensor),
]
return albu.Compose(_transform)
def main():
########### Load data and visualize ##################
DATA_DIR = './data/CO2wounds/'
# load repo with data if it is not exists
if not os.path.exists(DATA_DIR):
print('Please download our dataset')
x_train_dir = os.path.join(DATA_DIR, 'train')
y_train_dir = os.path.join(DATA_DIR, 'train_anns')
x_valid_dir = os.path.join(DATA_DIR, 'val')
y_valid_dir = os.path.join(DATA_DIR, 'val_anns')
# x_test_dir = os.path.join(DATA_DIR, 'test')
# y_test_dir = os.path.join(DATA_DIR, 'test_anns')
# Lets look at data we have
dataset = Dataset(x_train_dir, y_train_dir, classes=['wound'])
image, mask = dataset[4] # get some sample
visualize(
"initial_vis.png",
result=False,
image=image,
mask=mask.squeeze(),
)
########### Visualize resulted augmented images and masks ###########
augmented_dataset = Dataset(
x_train_dir,
y_train_dir,
augmentation=get_training_augmentation(),
classes=['wound'],
)
# same image with different random transforms
for i in range(3):
image, mask = augmented_dataset[1]
visualize("augm_"+str(i)+".png", result=False, image=image, mask=mask.squeeze(-1))
########### Create model and train ###########
ENCODER = 'mit_b5' #'se_resnext50_32x4d'
ENCODER_WEIGHTS = 'imagenet'
CLASSES = ['wound']
ACTIVATION = 'sigmoid' # could be None for logits or 'softmax2d' for multiclass segmentation
DEVICE = 'cuda'
# create segmentation model with pretrained encoder. Replace the model here with the architecture of your choice.
model = smp.FPN(
encoder_name=ENCODER,
encoder_weights=ENCODER_WEIGHTS,
classes=len(CLASSES),
activation=ACTIVATION,
)
# model = smp.DeepLabV3(
# encoder_name=ENCODER,
# encoder_weights=ENCODER_WEIGHTS,
# classes=len(CLASSES),
# activation=ACTIVATION,
# )
# model = smp.DeepLabV3Plus(
# encoder_name=ENCODER,
# encoder_weights=ENCODER_WEIGHTS,
# classes=len(CLASSES),
# activation=ACTIVATION,
# )
preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS)
train_dataset = Dataset(
x_train_dir,
y_train_dir,
augmentation=get_training_augmentation(),
preprocessing=get_preprocessing(preprocessing_fn),
classes=CLASSES,
)
valid_dataset = Dataset(
x_valid_dir,
y_valid_dir,
augmentation=get_validation_augmentation(),
preprocessing=get_preprocessing(preprocessing_fn),
classes=CLASSES,
)
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True, num_workers=12)
valid_loader = DataLoader(valid_dataset, batch_size=1, shuffle=False, num_workers=4)
# Dice/F1 score - https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
# IoU/Jaccard score - https://en.wikipedia.org/wiki/Jaccard_index
loss = smp.utils.losses.DiceLoss()
metrics = [
smp.utils.metrics.IoU(threshold=0.5),
smp.utils.metrics.Fscore()
]
optimizer = torch.optim.Adam([
dict(params=model.parameters(), lr=0.0001),
])
scheduler = StepLR(optimizer, step_size=10, gamma=0.1)
starting_epoch_scheduler=40 # TODO: tune this hyperparameter
# define number of epochs
max_score = 0
num_epochs = 100 # TODO: tune this hyperparameter
# create epoch runners
# it is a simple loop of iterating over dataloader`s samples
train_epoch = smp.utils.train.TrainEpoch(
model,
loss=loss,
metrics=metrics,
optimizer=optimizer,
device=DEVICE,
verbose=True,
)
valid_epoch = smp.utils.train.ValidEpoch(
model,
loss=loss,
metrics=metrics,
device=DEVICE,
verbose=True,
)
for i in range(0, num_epochs): # num_epochs
print('\nEpoch: {}'.format(i))
train_logs = train_epoch.run(train_loader)
valid_logs = valid_epoch.run(valid_loader)
if i >= starting_epoch_scheduler:
# Update the learning rate
scheduler.step()
# do something (save model, change lr, etc.)
if max_score < valid_logs['iou_score']:
max_score = valid_logs['iou_score']
torch.save(model, './best_checkpoint.pth')
print('Best model checkpoint saved!')
if i == 60: # TODO: tune this hyperparameter (before 25)
optimizer.param_groups[0]['lr'] = 1e-5
print('Decrease decoder learning rate to 1e-5!')
if i == num_epochs - 1:
torch.save(model, './last_checkpoint.pth')
print('Last checkpoint saved!')
########### Test best saved model ###########
# load best saved checkpoint
best_model = torch.load('./best_checkpoint.pth')
# # create test dataset
# test_dataset = Dataset(
# x_test_dir,
# y_test_dir,
# augmentation=get_validation_augmentation(),
# preprocessing=get_preprocessing(preprocessing_fn),
# classes=CLASSES,
# )
test_dataloader = DataLoader(valid_dataset)
# evaluate model on test set
metrics_test= metrics = [
smp.utils.metrics.IoU(threshold=0.5),
smp.utils.metrics.Fscore(),
smp.utils.metrics.Accuracy(),
smp.utils.metrics.Precision(),
smp.utils.metrics.Recall()
]
test_epoch = ValidEpoch(
model=best_model,
loss=loss,
metrics=metrics_test,
device=DEVICE,
verbose=True,
)
logs = test_epoch.run(test_dataloader)
########### Visualize predictions ###########
# test dataset without transformations for image visualization
test_dataset_vis = Dataset(
x_valid_dir, y_valid_dir,
classes=CLASSES,
)
for i in range(5):
n = np.random.choice(len(valid_dataset))
image_vis = test_dataset_vis[n][0].astype('uint8')
image, gt_mask = valid_dataset[n]
gt_mask = gt_mask.squeeze()
x_tensor = torch.from_numpy(image).to(DEVICE).unsqueeze(0)
pr_mask = best_model.predict(x_tensor)
pr_mask = (pr_mask.squeeze().cpu().numpy().round())
visualize(
"result_"+str(i)+".png",
result=True,
image=image_vis,
ground_truth_mask=gt_mask,
predicted_mask=pr_mask
)
if __name__ == "__main__":
main()