-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
74 lines (60 loc) · 1.55 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import streamlit as st
import pickle
import string
from nltk.corpus import stopwords
import nltk
from nltk.stem.porter import PorterStemmer
# Download nltk resources if not already present
nltk.download('punkt')
nltk.download('stopwords')
ps = PorterStemmer()
# Function to preprocess the text
def transform_text(text):
text = text.lower()
text = nltk.word_tokenize(text)
y = []
for i in text:
if i.isalnum():
y.append(i)
text = y[:]
y.clear()
for i in text:
if i not in stopwords.words('english') and i not in string.punctuation:
y.append(i)
text = y[:]
y.clear()
for i in text:
y.append(ps.stem(i))
return " ".join(y)
# Load pre-trained model and vectorizer
tfidf = pickle.load(open('vectorizer.pkl','rb'))
model = pickle.load(open('model.pkl','rb'))
# Page title and background style with custom image
st.markdown(
"""
<style>
body {
background-image: url(""); /* Replace with your image URL */
background-size: cover;
}
</style>
""",
unsafe_allow_html=True
)
# Header
st.title("Email/SMS Spam Classifier")
# Input text area
input_sms = st.text_area("Enter the message")
# Prediction button
if st.button('Predict'):
# Preprocess input
transformed_sms = transform_text(input_sms)
# Vectorize
vector_input = tfidf.transform([transformed_sms])
# Predict
result = model.predict(vector_input)[0]
# Display prediction result
if result == 1:
st.header("Spam")
else:
st.header("Not Spam")