-
Notifications
You must be signed in to change notification settings - Fork 20
/
stackedAutoencoder.py
597 lines (370 loc) · 22.4 KB
/
stackedAutoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
# This piece of software is bound by The MIT License (MIT)
# Copyright (c) 2014 Siddharth Agrawal
# Code written by : Siddharth Agrawal
# Email ID : [email protected]
import struct
import array
import numpy
import math
import time
import scipy.io
import scipy.optimize
###########################################################################################
""" Returns elementwise sigmoid output of input array """
def sigmoid(x):
return (1 / (1 + numpy.exp(-x)))
###########################################################################################
""" Returns the groundtruth matrix for a set of labels """
def getGroundTruth(labels):
""" Prepare data needed to construct groundtruth matrix """
labels = numpy.array(labels).flatten()
data = numpy.ones(len(labels))
indptr = numpy.arange(len(labels)+1)
""" Compute the groundtruth matrix and return """
ground_truth = scipy.sparse.csr_matrix((data, labels, indptr))
ground_truth = numpy.transpose(ground_truth.todense())
return ground_truth
###########################################################################################
""" The Sparse Autoencoder class """
class SparseAutoencoder(object):
#######################################################################################
""" Initialization of Autoencoder object """
def __init__(self, visible_size, hidden_size, rho, lamda, beta):
""" Initialize parameters of the Autoencoder object """
self.visible_size = visible_size # number of input units
self.hidden_size = hidden_size # number of hidden units
self.rho = rho # desired average activation of hidden units
self.lamda = lamda # weight decay parameter
self.beta = beta # weight of sparsity penalty term
""" Set limits for accessing 'theta' values """
self.limit0 = 0
self.limit1 = hidden_size * visible_size
self.limit2 = 2 * hidden_size * visible_size
self.limit3 = 2 * hidden_size * visible_size + hidden_size
self.limit4 = 2 * hidden_size * visible_size + hidden_size + visible_size
""" Initialize Neural Network weights randomly
W1, W2 values are chosen in the range [-r, r] """
r = math.sqrt(6) / math.sqrt(visible_size + hidden_size + 1)
rand = numpy.random.RandomState(int(time.time()))
W1 = numpy.asarray(rand.uniform(low = -r, high = r, size = (hidden_size, visible_size)))
W2 = numpy.asarray(rand.uniform(low = -r, high = r, size = (visible_size, hidden_size)))
""" Bias values are initialized to zero """
b1 = numpy.zeros((hidden_size, 1))
b2 = numpy.zeros((visible_size, 1))
""" Create 'theta' by unrolling W1, W2, b1, b2 """
self.theta = numpy.concatenate((W1.flatten(), W2.flatten(),
b1.flatten(), b2.flatten()))
#######################################################################################
""" Returns gradient of 'theta' using Backpropagation algorithm """
def sparseAutoencoderCost(self, theta, input):
""" Extract weights and biases from 'theta' input """
W1 = theta[self.limit0 : self.limit1].reshape(self.hidden_size, self.visible_size)
W2 = theta[self.limit1 : self.limit2].reshape(self.visible_size, self.hidden_size)
b1 = theta[self.limit2 : self.limit3].reshape(self.hidden_size, 1)
b2 = theta[self.limit3 : self.limit4].reshape(self.visible_size, 1)
""" Compute output layers by performing a feedforward pass
Computation is done for all the training inputs simultaneously """
hidden_layer = sigmoid(numpy.dot(W1, input) + b1)
output_layer = sigmoid(numpy.dot(W2, hidden_layer) + b2)
""" Estimate the average activation value of the hidden layers """
rho_cap = numpy.sum(hidden_layer, axis = 1) / input.shape[1]
""" Compute intermediate difference values using Backpropagation algorithm """
diff = output_layer - input
sum_of_squares_error = 0.5 * numpy.sum(numpy.multiply(diff, diff)) / input.shape[1]
weight_decay = 0.5 * self.lamda * (numpy.sum(numpy.multiply(W1, W1)) +
numpy.sum(numpy.multiply(W2, W2)))
KL_divergence = self.beta * numpy.sum(self.rho * numpy.log(self.rho / rho_cap) +
(1 - self.rho) * numpy.log((1 - self.rho) / (1 - rho_cap)))
cost = sum_of_squares_error + weight_decay + KL_divergence
KL_div_grad = self.beta * (-(self.rho / rho_cap) + ((1 - self.rho) / (1 - rho_cap)))
del_out = numpy.multiply(diff, numpy.multiply(output_layer, 1 - output_layer))
del_hid = numpy.multiply(numpy.dot(numpy.transpose(W2), del_out) + numpy.transpose(numpy.matrix(KL_div_grad)),
numpy.multiply(hidden_layer, 1 - hidden_layer))
""" Compute the gradient values by averaging partial derivatives
Partial derivatives are averaged over all training examples """
W1_grad = numpy.dot(del_hid, numpy.transpose(input))
W2_grad = numpy.dot(del_out, numpy.transpose(hidden_layer))
b1_grad = numpy.sum(del_hid, axis = 1)
b2_grad = numpy.sum(del_out, axis = 1)
W1_grad = W1_grad / input.shape[1] + self.lamda * W1
W2_grad = W2_grad / input.shape[1] + self.lamda * W2
b1_grad = b1_grad / input.shape[1]
b2_grad = b2_grad / input.shape[1]
""" Transform numpy matrices into arrays """
W1_grad = numpy.array(W1_grad)
W2_grad = numpy.array(W2_grad)
b1_grad = numpy.array(b1_grad)
b2_grad = numpy.array(b2_grad)
""" Unroll the gradient values and return as 'theta' gradient """
theta_grad = numpy.concatenate((W1_grad.flatten(), W2_grad.flatten(),
b1_grad.flatten(), b2_grad.flatten()))
return [cost, theta_grad]
###########################################################################################
""" The Softmax Regression class """
class SoftmaxRegression(object):
#######################################################################################
""" Initialization of Regressor object """
def __init__(self, input_size, num_classes, lamda):
""" Initialize parameters of the Regressor object """
self.input_size = input_size # input vector size
self.num_classes = num_classes # number of classes
self.lamda = lamda # weight decay parameter
""" Randomly initialize the class weights """
rand = numpy.random.RandomState(int(time.time()))
self.theta = 0.005 * numpy.asarray(rand.normal(size = (num_classes*input_size, 1)))
#######################################################################################
""" Returns the cost and gradient of 'theta' at a particular 'theta' """
def softmaxCost(self, theta, input, labels):
""" Compute the groundtruth matrix """
ground_truth = getGroundTruth(labels)
""" Reshape 'theta' for ease of computation """
theta = theta.reshape(self.num_classes, self.input_size)
""" Compute the class probabilities for each example """
theta_x = numpy.dot(theta, input)
hypothesis = numpy.exp(theta_x)
probabilities = hypothesis / numpy.sum(hypothesis, axis = 0)
""" Compute the traditional cost term """
cost_examples = numpy.multiply(ground_truth, numpy.log(probabilities))
traditional_cost = -(numpy.sum(cost_examples) / input.shape[1])
""" Compute the weight decay term """
theta_squared = numpy.multiply(theta, theta)
weight_decay = 0.5 * self.lamda * numpy.sum(theta_squared)
""" Add both terms to get the cost """
cost = traditional_cost + weight_decay
""" Compute and unroll 'theta' gradient """
theta_grad = -numpy.dot(ground_truth - probabilities, numpy.transpose(input))
theta_grad = theta_grad / input.shape[1] + self.lamda * theta
theta_grad = numpy.array(theta_grad)
theta_grad = theta_grad.flatten()
return [cost, theta_grad]
###########################################################################################
""" Loads the images from the provided file name """
def loadMNISTImages(file_name):
""" Open the file """
image_file = open(file_name, 'rb')
""" Read header information from the file """
head1 = image_file.read(4)
head2 = image_file.read(4)
head3 = image_file.read(4)
head4 = image_file.read(4)
""" Format the header information for useful data """
num_examples = struct.unpack('>I', head2)[0]
num_rows = struct.unpack('>I', head3)[0]
num_cols = struct.unpack('>I', head4)[0]
""" Initialize dataset as array of zeros """
dataset = numpy.zeros((num_rows*num_cols, num_examples))
""" Read the actual image data """
images_raw = array.array('B', image_file.read())
image_file.close()
""" Arrange the data in columns """
for i in range(num_examples):
limit1 = num_rows * num_cols * i
limit2 = num_rows * num_cols * (i + 1)
dataset[:, i] = images_raw[limit1 : limit2]
""" Normalize and return the dataset """
return dataset / 255
###########################################################################################
""" Loads the image labels from the provided file name """
def loadMNISTLabels(file_name):
""" Open the file """
label_file = open(file_name, 'rb')
""" Read header information from the file """
head1 = label_file.read(4)
head2 = label_file.read(4)
""" Format the header information for useful data """
num_examples = struct.unpack('>I', head2)[0]
""" Initialize data labels as array of zeros """
labels = numpy.zeros((num_examples, 1), dtype = numpy.int)
""" Read the label data """
labels_raw = array.array('b', label_file.read())
label_file.close()
""" Copy and return the label data """
labels[:, 0] = labels_raw[:]
return labels
###########################################################################################
""" Returns the hidden layer activations of the Autoencoder """
def feedForwardAutoencoder(theta, hidden_size, visible_size, input):
""" Define limits to access useful data """
limit0 = 0
limit1 = hidden_size * visible_size
limit2 = 2 * hidden_size * visible_size
limit3 = 2 * hidden_size * visible_size + hidden_size
""" Access W1 and b1 from 'theta' """
W1 = theta[limit0 : limit1].reshape(hidden_size, visible_size)
b1 = theta[limit2 : limit3].reshape(hidden_size, 1)
""" Compute the hidden layer activations """
hidden_layer = 1 / (1 + numpy.exp(-(numpy.dot(W1, input) + b1)))
return hidden_layer
###########################################################################################
""" Returns a row of Stacked Autoencoder parameters """
def stack2Params(stack):
""" Initialize an empty list of parameters """
params = []
num_layers = len(stack) / 2
""" For each layer in the neural network, append the corresponding parameters """
for i in range(num_layers):
params = numpy.concatenate((params, numpy.array(stack[i, "W"]).flatten()))
params = numpy.concatenate((params, numpy.array(stack[i, "b"]).flatten()))
return params
###########################################################################################
""" Returns a stack of Stacked Autoencoder parameters """
def params2Stack(params, net_config):
""" Initialize an empty stack """
stack = {}
limit0 = 0
for i in range(len(net_config)-2):
""" Calculate limits of layer parameters, using neural network config """
limit1 = limit0 + net_config[i] * net_config[i+1]
limit2 = limit1 + net_config[i+1]
""" Extract layer parameters, and store in the stack """
stack[i, "W"] = params[limit0 : limit1].reshape(net_config[i+1], net_config[i])
stack[i, "b"] = params[limit1 : limit2].reshape(net_config[i+1], 1)
limit0 = limit2
return stack
###########################################################################################
""" Function for finetuning the Stacked Autoencoder """
def stackedAutoencoderCost(theta, net_config, lamda, data, labels):
""" Calculate limits for Softmax parameters """
input_size = net_config[-2]
num_classes = net_config[-1]
limit0 = 0
limit1 = num_classes * input_size
""" Extract Softmax and layer parameters """
softmax_theta = theta[limit0 : limit1].reshape(num_classes, input_size)
stack = params2Stack(theta[limit1 :], net_config)
num_layers = len(stack) / 2
""" Calculate activations for every layer """
activation = {}
activation[0] = data
for i in range(num_layers):
activation[i+1] = sigmoid(numpy.dot(stack[i, "W"], activation[i]) + stack[i, "b"])
""" Compute the groundtruth matrix """
ground_truth = getGroundTruth(labels)
""" Compute the class probabilities for each example """
theta_x = numpy.dot(softmax_theta, activation[num_layers])
hypothesis = numpy.exp(theta_x)
probabilities = hypothesis / numpy.sum(hypothesis, axis = 0)
""" Compute the traditional cost term """
cost_examples = numpy.multiply(ground_truth, numpy.log(probabilities))
traditional_cost = -(numpy.sum(cost_examples) / data.shape[1])
""" Compute the weight decay term """
theta_squared = numpy.multiply(softmax_theta, softmax_theta)
weight_decay = 0.5 * lamda * numpy.sum(theta_squared)
""" Add both terms to get the cost """
cost = traditional_cost + weight_decay
""" Compute Softmax 'theta' gradient """
softmax_theta_grad = -numpy.dot(ground_truth - probabilities, numpy.transpose(activation[num_layers]))
softmax_theta_grad = softmax_theta_grad / data.shape[1] + lamda * softmax_theta
""" Compute intermediate difference values using Backpropagation algorithm """
delta = {}
delta[num_layers] = -numpy.multiply(numpy.dot(numpy.transpose(softmax_theta), ground_truth - probabilities),
numpy.multiply(activation[num_layers], 1 - activation[num_layers]))
for i in range(num_layers-1):
index = num_layers - i - 1
delta[index] = numpy.multiply(numpy.dot(numpy.transpose(stack[index, "W"]), delta[index+1]),
numpy.multiply(activation[index], 1 - activation[index]))
""" Compute the partial derivatives, with respect to the layer parameters """
stack_grad = {}
for i in range(num_layers):
index = num_layers - i - 1
stack_grad[index, "W"] = numpy.dot(delta[index+1], numpy.transpose(activation[index])) / data.shape[1]
stack_grad[index, "b"] = numpy.sum(delta[index+1], axis = 1) / data.shape[1]
""" Concatenate the gradient values and return as 'theta' gradient """
params_grad = stack2Params(stack_grad)
theta_grad = numpy.concatenate((numpy.array(softmax_theta_grad).flatten(),
numpy.array(params_grad).flatten()))
return [cost, theta_grad]
###########################################################################################
""" Returns predictions using the trained Stacked Autoencoder model """
def stackedAutoencoderPredict(theta, net_config, data):
""" Calculate limits for Softmax parameters """
input_size = net_config[-2]
num_classes = net_config[-1]
limit0 = 0
limit1 = num_classes * input_size
""" Extract Softmax and layer parameters """
softmax_theta = theta[limit0 : limit1].reshape(num_classes, input_size)
stack = params2Stack(theta[limit1 :], net_config)
num_layers = len(stack) / 2
""" Calculate the activations of the final layer """
activation = data
for i in range(num_layers):
activation = sigmoid(numpy.dot(stack[i, "W"], activation) + stack[i, "b"])
""" Compute the class probabilities for each example """
theta_x = numpy.dot(softmax_theta, activation)
hypothesis = numpy.exp(theta_x)
probabilities = hypothesis / numpy.sum(hypothesis, axis = 0)
""" Give the predictions based on probability values """
predictions = numpy.zeros((data.shape[1], 1))
predictions[:, 0] = numpy.argmax(probabilities, axis = 0)
return predictions
###########################################################################################
""" Loads data, trains the Stacked Autoencoder model and predicts classes for test data """
def executeStackedAutoencoder():
""" Define the parameters of the first Autoencoder """
visible_size = 784 # size of input vector
hidden_size1 = 200 # size of hidden layer vector of first autoencoder
hidden_size2 = 200 # size of hidden layer vector of second autoencoder
rho = 0.1 # desired average activation of hidden units
lamda = 0.003 # weight decay parameter
beta = 3 # weight of sparsity penalty term
max_iterations = 200 # number of optimization iterations
num_classes = 10 # number of classes
""" Load MNIST images for training and testing """
train_data = loadMNISTImages('train-images.idx3-ubyte')
train_labels = loadMNISTLabels('train-labels.idx1-ubyte')
""" Initialize the first Autoencoder with the above parameters """
encoder1 = SparseAutoencoder(visible_size, hidden_size1, rho, lamda, beta)
""" Run the L-BFGS algorithm to get the optimal parameter values """
opt_solution = scipy.optimize.minimize(encoder1.sparseAutoencoderCost, encoder1.theta,
args = (train_data,), method = 'L-BFGS-B',
jac = True, options = {'maxiter': max_iterations})
sae1_opt_theta = opt_solution.x
""" Get the features corresponding to first Autoencoder """
sae1_features = feedForwardAutoencoder(sae1_opt_theta, hidden_size1, visible_size, train_data)
""" Initialize the second Autoencoder with the above parameters """
encoder2 = SparseAutoencoder(hidden_size1, hidden_size2, rho, lamda, beta)
""" Run the L-BFGS algorithm to get the optimal parameter values """
opt_solution = scipy.optimize.minimize(encoder2.sparseAutoencoderCost, encoder2.theta,
args = (sae1_features,), method = 'L-BFGS-B',
jac = True, options = {'maxiter': max_iterations})
sae2_opt_theta = opt_solution.x
""" Get the features corresponding to second Autoencoder """
sae2_features = feedForwardAutoencoder(sae2_opt_theta, hidden_size2, hidden_size1, sae1_features)
""" Initialize Softmax Regressor with the above parameters """
regressor = SoftmaxRegression(hidden_size2, num_classes, lamda)
""" Run the L-BFGS algorithm to get the optimal parameter values """
opt_solution = scipy.optimize.minimize(regressor.softmaxCost, regressor.theta,
args = (sae2_features, train_labels,), method = 'L-BFGS-B',
jac = True, options = {'maxiter': max_iterations})
softmax_opt_theta = opt_solution.x
""" Create a stack of the Stacked Autoencoder parameters """
stack = {}
stack[0, "W"] = sae1_opt_theta[encoder1.limit0 : encoder1.limit1].reshape(hidden_size1, visible_size)
stack[1, "W"] = sae2_opt_theta[encoder2.limit0 : encoder2.limit1].reshape(hidden_size2, hidden_size1)
stack[0, "b"] = sae1_opt_theta[encoder1.limit2 : encoder1.limit3].reshape(hidden_size1, 1)
stack[1, "b"] = sae2_opt_theta[encoder2.limit2 : encoder2.limit3].reshape(hidden_size2, 1)
""" Create a vector of the Stacked Autoencoder parameters for optimization """
stack_params = stack2Params(stack)
stacked_ae_theta = numpy.concatenate((softmax_opt_theta.flatten(), stack_params.flatten()))
""" Create a neural network configuration, with number of units in each layer """
net_config = [visible_size, hidden_size1, hidden_size2, num_classes]
""" Load MNIST test images and labels """
test_data = loadMNISTImages('t10k-images.idx3-ubyte')
test_labels = loadMNISTLabels('t10k-labels.idx1-ubyte')
""" Get predictions after greedy training """
predictions = stackedAutoencoderPredict(stacked_ae_theta, net_config, test_data)
""" Print accuracy of the trained model """
correct = test_labels[:, 0] == predictions[:, 0]
print """Accuracy after greedy training :""", numpy.mean(correct)
""" Finetune the greedily trained model """
opt_solution = scipy.optimize.minimize(stackedAutoencoderCost, stacked_ae_theta,
args = (net_config, lamda, train_data, train_labels,),
method = 'L-BFGS-B', jac = True, options = {'maxiter': max_iterations})
stacked_ae_opt_theta = opt_solution.x
""" Get predictions after finetuning """
predictions = stackedAutoencoderPredict(stacked_ae_opt_theta, net_config, test_data)
""" Print accuracy of the trained model """
correct = test_labels[:, 0] == predictions[:, 0]
print """Accuracy after finetuning :""", numpy.mean(correct)
executeStackedAutoencoder()