diff --git a/README.md b/README.md index 648838963a..644ea97b74 100644 --- a/README.md +++ b/README.md @@ -91,6 +91,7 @@ Supported [datasets](https://mmpose.readthedocs.io/en/latest/datasets.html): - [x] [COCO](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#coco-eccv-2014) \[[homepage](http://cocodataset.org/)\] (ECCV'2014) - [x] [COCO-WholeBody](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#coco-wholebody-eccv-2020) \[[homepage](https://github.com/jin-s13/COCO-WholeBody/)\] (ECCV'2020) +- [x] [Halpe](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#halpe-cvpr-2020) \[[homepage](https://github.com/Fang-Haoshu/Halpe-FullBody/)\] (CVPR'2020) - [x] [MPII](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#mpii-cvpr-2014) \[[homepage](http://human-pose.mpi-inf.mpg.de/)\] (CVPR'2014) - [x] [MPII-TRB](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#mpii-trb-iccv-2019) \[[homepage](https://github.com/kennymckormick/Triplet-Representation-of-human-Body)\] (ICCV'2019) - [x] [AI Challenger](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#ai-challenger-arxiv-2017) \[[homepage](https://github.com/AIChallenger/AI_Challenger_2017)\] (ArXiv'2017) diff --git a/README_CN.md b/README_CN.md index bb267b0d13..9ab5e68edf 100644 --- a/README_CN.md +++ b/README_CN.md @@ -91,6 +91,7 @@ https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb- - [x] [COCO](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#coco-eccv-2014) \[[homepage](http://cocodataset.org/)\] (ECCV'2014) - [x] [COCO-WholeBody](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#coco-wholebody-eccv-2020) \[[homepage](https://github.com/jin-s13/COCO-WholeBody/)\] (ECCV'2020) +- [x] [Halpe](https://mmpose.readthedocs.io/en/latest/papers/datasets.html#halpe-cvpr-2020) \[[homepage](https://github.com/Fang-Haoshu/Halpe-FullBody/)\] (CVPR'2020) - [x] [MPII](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#mpii-cvpr-2014) \[[homepage](http://human-pose.mpi-inf.mpg.de/)\] (CVPR'2014) - [x] [MPII-TRB](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#mpii-trb-iccv-2019) \[[homepage](https://github.com/kennymckormick/Triplet-Representation-of-human-Body)\] (ICCV'2019) - [x] [AI Challenger](https://mmpose.readthedocs.io/zh_CN/latest/papers/datasets.html#ai-challenger-arxiv-2017) \[[homepage](https://github.com/AIChallenger/AI_Challenger_2017)\] (ArXiv'2017) diff --git a/configs/_base_/datasets/halpe.py b/configs/_base_/datasets/halpe.py new file mode 100644 index 0000000000..1385fe81dc --- /dev/null +++ b/configs/_base_/datasets/halpe.py @@ -0,0 +1,1157 @@ +dataset_info = dict( + dataset_name='halpe', + paper_info=dict( + author='Li, Yong-Lu and Xu, Liang and Liu, Xinpeng and Huang, Xijie' + ' and Xu, Yue and Wang, Shiyi and Fang, Hao-Shu' + ' and Ma, Ze and Chen, Mingyang and Lu, Cewu', + title='PaStaNet: Toward Human Activity Knowledge Engine', + container='CVPR', + year='2020', + homepage='https://github.com/Fang-Haoshu/Halpe-FullBody/', + ), + keypoint_info={ + 0: + dict(name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), + 1: + dict( + name='left_eye', + id=1, + color=[51, 153, 255], + type='upper', + swap='right_eye'), + 2: + dict( + name='right_eye', + id=2, + color=[51, 153, 255], + type='upper', + swap='left_eye'), + 3: + dict( + name='left_ear', + id=3, + color=[51, 153, 255], + type='upper', + swap='right_ear'), + 4: + dict( + name='right_ear', + id=4, + color=[51, 153, 255], + type='upper', + swap='left_ear'), + 5: + dict( + name='left_shoulder', + id=5, + color=[0, 255, 0], + type='upper', + swap='right_shoulder'), + 6: + dict( + name='right_shoulder', + id=6, + color=[255, 128, 0], + type='upper', + swap='left_shoulder'), + 7: + dict( + name='left_elbow', + id=7, + color=[0, 255, 0], + type='upper', + swap='right_elbow'), + 8: + dict( + name='right_elbow', + id=8, + color=[255, 128, 0], + type='upper', + swap='left_elbow'), + 9: + dict( + name='left_wrist', + id=9, + color=[0, 255, 0], + type='upper', + swap='right_wrist'), + 10: + dict( + name='right_wrist', + id=10, + color=[255, 128, 0], + type='upper', + swap='left_wrist'), + 11: + dict( + name='left_hip', + id=11, + color=[0, 255, 0], + type='lower', + swap='right_hip'), + 12: + dict( + name='right_hip', + id=12, + color=[255, 128, 0], + type='lower', + swap='left_hip'), + 13: + dict( + name='left_knee', + id=13, + color=[0, 255, 0], + type='lower', + swap='right_knee'), + 14: + dict( + name='right_knee', + id=14, + color=[255, 128, 0], + type='lower', + swap='left_knee'), + 15: + dict( + name='left_ankle', + id=15, + color=[0, 255, 0], + type='lower', + swap='right_ankle'), + 16: + dict( + name='right_ankle', + id=16, + color=[255, 128, 0], + type='lower', + swap='left_ankle'), + 17: + dict(name='head', id=17, color=[255, 128, 0], type='upper', swap=''), + 18: + dict(name='neck', id=18, color=[255, 128, 0], type='upper', swap=''), + 19: + dict(name='hip', id=19, color=[255, 128, 0], type='lower', swap=''), + 20: + dict( + name='left_big_toe', + id=20, + color=[255, 128, 0], + type='lower', + swap='right_big_toe'), + 21: + dict( + name='right_big_toe', + id=21, + color=[255, 128, 0], + type='lower', + swap='left_big_toe'), + 22: + dict( + name='left_small_toe', + id=22, + color=[255, 128, 0], + type='lower', + swap='right_small_toe'), + 23: + dict( + name='right_small_toe', + id=23, + color=[255, 128, 0], + type='lower', + swap='left_small_toe'), + 24: + dict( + name='left_heel', + id=24, + color=[255, 128, 0], + type='lower', + swap='right_heel'), + 25: + dict( + name='right_heel', + id=25, + color=[255, 128, 0], + type='lower', + swap='left_heel'), + 26: + dict( + name='face-0', + id=26, + color=[255, 255, 255], + type='', + swap='face-16'), + 27: + dict( + name='face-1', + id=27, + color=[255, 255, 255], + type='', + swap='face-15'), + 28: + dict( + name='face-2', + id=28, + color=[255, 255, 255], + type='', + swap='face-14'), + 29: + dict( + name='face-3', + id=29, + color=[255, 255, 255], + type='', + swap='face-13'), + 30: + dict( + name='face-4', + id=30, + color=[255, 255, 255], + type='', + swap='face-12'), + 31: + dict( + name='face-5', + id=31, + color=[255, 255, 255], + type='', + swap='face-11'), + 32: + dict( + name='face-6', + id=32, + color=[255, 255, 255], + type='', + swap='face-10'), + 33: + dict( + name='face-7', + id=33, + color=[255, 255, 255], + type='', + swap='face-9'), + 34: + dict(name='face-8', id=34, color=[255, 255, 255], type='', swap=''), + 35: + dict( + name='face-9', + id=35, + color=[255, 255, 255], + type='', + swap='face-7'), + 36: + dict( + name='face-10', + id=36, + color=[255, 255, 255], + type='', + swap='face-6'), + 37: + dict( + name='face-11', + id=37, + color=[255, 255, 255], + type='', + swap='face-5'), + 38: + dict( + name='face-12', + id=38, + color=[255, 255, 255], + type='', + swap='face-4'), + 39: + dict( + name='face-13', + id=39, + color=[255, 255, 255], + type='', + swap='face-3'), + 40: + dict( + name='face-14', + id=40, + color=[255, 255, 255], + type='', + swap='face-2'), + 41: + dict( + name='face-15', + id=41, + color=[255, 255, 255], + type='', + swap='face-1'), + 42: + dict( + name='face-16', + id=42, + color=[255, 255, 255], + type='', + swap='face-0'), + 43: + dict( + name='face-17', + id=43, + color=[255, 255, 255], + type='', + swap='face-26'), + 44: + dict( + name='face-18', + id=44, + color=[255, 255, 255], + type='', + swap='face-25'), + 45: + dict( + name='face-19', + id=45, + color=[255, 255, 255], + type='', + swap='face-24'), + 46: + dict( + name='face-20', + id=46, + color=[255, 255, 255], + type='', + swap='face-23'), + 47: + dict( + name='face-21', + id=47, + color=[255, 255, 255], + type='', + swap='face-22'), + 48: + dict( + name='face-22', + id=48, + color=[255, 255, 255], + type='', + swap='face-21'), + 49: + dict( + name='face-23', + id=49, + color=[255, 255, 255], + type='', + swap='face-20'), + 50: + dict( + name='face-24', + id=50, + color=[255, 255, 255], + type='', + swap='face-19'), + 51: + dict( + name='face-25', + id=51, + color=[255, 255, 255], + type='', + swap='face-18'), + 52: + dict( + name='face-26', + id=52, + color=[255, 255, 255], + type='', + swap='face-17'), + 53: + dict(name='face-27', id=53, color=[255, 255, 255], type='', swap=''), + 54: + dict(name='face-28', id=54, color=[255, 255, 255], type='', swap=''), + 55: + dict(name='face-29', id=55, color=[255, 255, 255], type='', swap=''), + 56: + dict(name='face-30', id=56, color=[255, 255, 255], type='', swap=''), + 57: + dict( + name='face-31', + id=57, + color=[255, 255, 255], + type='', + swap='face-35'), + 58: + dict( + name='face-32', + id=58, + color=[255, 255, 255], + type='', + swap='face-34'), + 59: + dict(name='face-33', id=59, color=[255, 255, 255], type='', swap=''), + 60: + dict( + name='face-34', + id=60, + color=[255, 255, 255], + type='', + swap='face-32'), + 61: + dict( + name='face-35', + id=61, + color=[255, 255, 255], + type='', + swap='face-31'), + 62: + dict( + name='face-36', + id=62, + color=[255, 255, 255], + type='', + swap='face-45'), + 63: + dict( + name='face-37', + id=63, + color=[255, 255, 255], + type='', + swap='face-44'), + 64: + dict( + name='face-38', + id=64, + color=[255, 255, 255], + type='', + swap='face-43'), + 65: + dict( + name='face-39', + id=65, + color=[255, 255, 255], + type='', + swap='face-42'), + 66: + dict( + name='face-40', + id=66, + color=[255, 255, 255], + type='', + swap='face-47'), + 67: + dict( + name='face-41', + id=67, + color=[255, 255, 255], + type='', + swap='face-46'), + 68: + dict( + name='face-42', + id=68, + color=[255, 255, 255], + type='', + swap='face-39'), + 69: + dict( + name='face-43', + id=69, + color=[255, 255, 255], + type='', + swap='face-38'), + 70: + dict( + name='face-44', + id=70, + color=[255, 255, 255], + type='', + swap='face-37'), + 71: + dict( + name='face-45', + id=71, + color=[255, 255, 255], + type='', + swap='face-36'), + 72: + dict( + name='face-46', + id=72, + color=[255, 255, 255], + type='', + swap='face-41'), + 73: + dict( + name='face-47', + id=73, + color=[255, 255, 255], + type='', + swap='face-40'), + 74: + dict( + name='face-48', + id=74, + color=[255, 255, 255], + type='', + swap='face-54'), + 75: + dict( + name='face-49', + id=75, + color=[255, 255, 255], + type='', + swap='face-53'), + 76: + dict( + name='face-50', + id=76, + color=[255, 255, 255], + type='', + swap='face-52'), + 77: + dict(name='face-51', id=77, color=[255, 255, 255], type='', swap=''), + 78: + dict( + name='face-52', + id=78, + color=[255, 255, 255], + type='', + swap='face-50'), + 79: + dict( + name='face-53', + id=79, + color=[255, 255, 255], + type='', + swap='face-49'), + 80: + dict( + name='face-54', + id=80, + color=[255, 255, 255], + type='', + swap='face-48'), + 81: + dict( + name='face-55', + id=81, + color=[255, 255, 255], + type='', + swap='face-59'), + 82: + dict( + name='face-56', + id=82, + color=[255, 255, 255], + type='', + swap='face-58'), + 83: + dict(name='face-57', id=83, color=[255, 255, 255], type='', swap=''), + 84: + dict( + name='face-58', + id=84, + color=[255, 255, 255], + type='', + swap='face-56'), + 85: + dict( + name='face-59', + id=85, + color=[255, 255, 255], + type='', + swap='face-55'), + 86: + dict( + name='face-60', + id=86, + color=[255, 255, 255], + type='', + swap='face-64'), + 87: + dict( + name='face-61', + id=87, + color=[255, 255, 255], + type='', + swap='face-63'), + 88: + dict(name='face-62', id=88, color=[255, 255, 255], type='', swap=''), + 89: + dict( + name='face-63', + id=89, + color=[255, 255, 255], + type='', + swap='face-61'), + 90: + dict( + name='face-64', + id=90, + color=[255, 255, 255], + type='', + swap='face-60'), + 91: + dict( + name='face-65', + id=91, + color=[255, 255, 255], + type='', + swap='face-67'), + 92: + dict(name='face-66', id=92, color=[255, 255, 255], type='', swap=''), + 93: + dict( + name='face-67', + id=93, + color=[255, 255, 255], + type='', + swap='face-65'), + 94: + dict( + name='left_hand_root', + id=94, + color=[255, 255, 255], + type='', + swap='right_hand_root'), + 95: + dict( + name='left_thumb1', + id=95, + color=[255, 128, 0], + type='', + swap='right_thumb1'), + 96: + dict( + name='left_thumb2', + id=96, + color=[255, 128, 0], + type='', + swap='right_thumb2'), + 97: + dict( + name='left_thumb3', + id=97, + color=[255, 128, 0], + type='', + swap='right_thumb3'), + 98: + dict( + name='left_thumb4', + id=98, + color=[255, 128, 0], + type='', + swap='right_thumb4'), + 99: + dict( + name='left_forefinger1', + id=99, + color=[255, 153, 255], + type='', + swap='right_forefinger1'), + 100: + dict( + name='left_forefinger2', + id=100, + color=[255, 153, 255], + type='', + swap='right_forefinger2'), + 101: + dict( + name='left_forefinger3', + id=101, + color=[255, 153, 255], + type='', + swap='right_forefinger3'), + 102: + dict( + name='left_forefinger4', + id=102, + color=[255, 153, 255], + type='', + swap='right_forefinger4'), + 103: + dict( + name='left_middle_finger1', + id=103, + color=[102, 178, 255], + type='', + swap='right_middle_finger1'), + 104: + dict( + name='left_middle_finger2', + id=104, + color=[102, 178, 255], + type='', + swap='right_middle_finger2'), + 105: + dict( + name='left_middle_finger3', + id=105, + color=[102, 178, 255], + type='', + swap='right_middle_finger3'), + 106: + dict( + name='left_middle_finger4', + id=106, + color=[102, 178, 255], + type='', + swap='right_middle_finger4'), + 107: + dict( + name='left_ring_finger1', + id=107, + color=[255, 51, 51], + type='', + swap='right_ring_finger1'), + 108: + dict( + name='left_ring_finger2', + id=108, + color=[255, 51, 51], + type='', + swap='right_ring_finger2'), + 109: + dict( + name='left_ring_finger3', + id=109, + color=[255, 51, 51], + type='', + swap='right_ring_finger3'), + 110: + dict( + name='left_ring_finger4', + id=110, + color=[255, 51, 51], + type='', + swap='right_ring_finger4'), + 111: + dict( + name='left_pinky_finger1', + id=111, + color=[0, 255, 0], + type='', + swap='right_pinky_finger1'), + 112: + dict( + name='left_pinky_finger2', + id=112, + color=[0, 255, 0], + type='', + swap='right_pinky_finger2'), + 113: + dict( + name='left_pinky_finger3', + id=113, + color=[0, 255, 0], + type='', + swap='right_pinky_finger3'), + 114: + dict( + name='left_pinky_finger4', + id=114, + color=[0, 255, 0], + type='', + swap='right_pinky_finger4'), + 115: + dict( + name='right_hand_root', + id=115, + color=[255, 255, 255], + type='', + swap='left_hand_root'), + 116: + dict( + name='right_thumb1', + id=116, + color=[255, 128, 0], + type='', + swap='left_thumb1'), + 117: + dict( + name='right_thumb2', + id=117, + color=[255, 128, 0], + type='', + swap='left_thumb2'), + 118: + dict( + name='right_thumb3', + id=118, + color=[255, 128, 0], + type='', + swap='left_thumb3'), + 119: + dict( + name='right_thumb4', + id=119, + color=[255, 128, 0], + type='', + swap='left_thumb4'), + 120: + dict( + name='right_forefinger1', + id=120, + color=[255, 153, 255], + type='', + swap='left_forefinger1'), + 121: + dict( + name='right_forefinger2', + id=121, + color=[255, 153, 255], + type='', + swap='left_forefinger2'), + 122: + dict( + name='right_forefinger3', + id=122, + color=[255, 153, 255], + type='', + swap='left_forefinger3'), + 123: + dict( + name='right_forefinger4', + id=123, + color=[255, 153, 255], + type='', + swap='left_forefinger4'), + 124: + dict( + name='right_middle_finger1', + id=124, + color=[102, 178, 255], + type='', + swap='left_middle_finger1'), + 125: + dict( + name='right_middle_finger2', + id=125, + color=[102, 178, 255], + type='', + swap='left_middle_finger2'), + 126: + dict( + name='right_middle_finger3', + id=126, + color=[102, 178, 255], + type='', + swap='left_middle_finger3'), + 127: + dict( + name='right_middle_finger4', + id=127, + color=[102, 178, 255], + type='', + swap='left_middle_finger4'), + 128: + dict( + name='right_ring_finger1', + id=128, + color=[255, 51, 51], + type='', + swap='left_ring_finger1'), + 129: + dict( + name='right_ring_finger2', + id=129, + color=[255, 51, 51], + type='', + swap='left_ring_finger2'), + 130: + dict( + name='right_ring_finger3', + id=130, + color=[255, 51, 51], + type='', + swap='left_ring_finger3'), + 131: + dict( + name='right_ring_finger4', + id=131, + color=[255, 51, 51], + type='', + swap='left_ring_finger4'), + 132: + dict( + name='right_pinky_finger1', + id=132, + color=[0, 255, 0], + type='', + swap='left_pinky_finger1'), + 133: + dict( + name='right_pinky_finger2', + id=133, + color=[0, 255, 0], + type='', + swap='left_pinky_finger2'), + 134: + dict( + name='right_pinky_finger3', + id=134, + color=[0, 255, 0], + type='', + swap='left_pinky_finger3'), + 135: + dict( + name='right_pinky_finger4', + id=135, + color=[0, 255, 0], + type='', + swap='left_pinky_finger4') + }, + skeleton_info={ + 0: + dict(link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), + 1: + dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), + 2: + dict(link=('left_hip', 'hip'), id=2, color=[0, 255, 0]), + 3: + dict(link=('right_ankle', 'right_knee'), id=3, color=[255, 128, 0]), + 4: + dict(link=('right_knee', 'right_hip'), id=4, color=[255, 128, 0]), + 5: + dict(link=('right_hip', 'hip'), id=5, color=[255, 128, 0]), + 6: + dict(link=('head', 'neck'), id=6, color=[51, 153, 255]), + 7: + dict(link=('neck', 'hip'), id=7, color=[51, 153, 255]), + 8: + dict(link=('neck', 'left_shoulder'), id=8, color=[0, 255, 0]), + 9: + dict(link=('left_shoulder', 'left_elbow'), id=9, color=[0, 255, 0]), + 10: + dict(link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), + 11: + dict(link=('neck', 'right_shoulder'), id=11, color=[255, 128, 0]), + 12: + dict( + link=('right_shoulder', 'right_elbow'), id=12, color=[255, 128, + 0]), + 13: + dict(link=('right_elbow', 'right_wrist'), id=13, color=[255, 128, 0]), + 14: + dict(link=('left_eye', 'right_eye'), id=14, color=[51, 153, 255]), + 15: + dict(link=('nose', 'left_eye'), id=15, color=[51, 153, 255]), + 16: + dict(link=('nose', 'right_eye'), id=16, color=[51, 153, 255]), + 17: + dict(link=('left_eye', 'left_ear'), id=17, color=[51, 153, 255]), + 18: + dict(link=('right_eye', 'right_ear'), id=18, color=[51, 153, 255]), + 19: + dict(link=('left_ear', 'left_shoulder'), id=19, color=[51, 153, 255]), + 20: + dict( + link=('right_ear', 'right_shoulder'), id=20, color=[51, 153, 255]), + 21: + dict(link=('left_ankle', 'left_big_toe'), id=21, color=[0, 255, 0]), + 22: + dict(link=('left_ankle', 'left_small_toe'), id=22, color=[0, 255, 0]), + 23: + dict(link=('left_ankle', 'left_heel'), id=23, color=[0, 255, 0]), + 24: + dict( + link=('right_ankle', 'right_big_toe'), id=24, color=[255, 128, 0]), + 25: + dict( + link=('right_ankle', 'right_small_toe'), + id=25, + color=[255, 128, 0]), + 26: + dict(link=('right_ankle', 'right_heel'), id=26, color=[255, 128, 0]), + 27: + dict(link=('left_wrist', 'left_thumb1'), id=27, color=[255, 128, 0]), + 28: + dict(link=('left_thumb1', 'left_thumb2'), id=28, color=[255, 128, 0]), + 29: + dict(link=('left_thumb2', 'left_thumb3'), id=29, color=[255, 128, 0]), + 30: + dict(link=('left_thumb3', 'left_thumb4'), id=30, color=[255, 128, 0]), + 31: + dict( + link=('left_wrist', 'left_forefinger1'), + id=31, + color=[255, 153, 255]), + 32: + dict( + link=('left_forefinger1', 'left_forefinger2'), + id=32, + color=[255, 153, 255]), + 33: + dict( + link=('left_forefinger2', 'left_forefinger3'), + id=33, + color=[255, 153, 255]), + 34: + dict( + link=('left_forefinger3', 'left_forefinger4'), + id=34, + color=[255, 153, 255]), + 35: + dict( + link=('left_wrist', 'left_middle_finger1'), + id=35, + color=[102, 178, 255]), + 36: + dict( + link=('left_middle_finger1', 'left_middle_finger2'), + id=36, + color=[102, 178, 255]), + 37: + dict( + link=('left_middle_finger2', 'left_middle_finger3'), + id=37, + color=[102, 178, 255]), + 38: + dict( + link=('left_middle_finger3', 'left_middle_finger4'), + id=38, + color=[102, 178, 255]), + 39: + dict( + link=('left_wrist', 'left_ring_finger1'), + id=39, + color=[255, 51, 51]), + 40: + dict( + link=('left_ring_finger1', 'left_ring_finger2'), + id=40, + color=[255, 51, 51]), + 41: + dict( + link=('left_ring_finger2', 'left_ring_finger3'), + id=41, + color=[255, 51, 51]), + 42: + dict( + link=('left_ring_finger3', 'left_ring_finger4'), + id=42, + color=[255, 51, 51]), + 43: + dict( + link=('left_wrist', 'left_pinky_finger1'), + id=43, + color=[0, 255, 0]), + 44: + dict( + link=('left_pinky_finger1', 'left_pinky_finger2'), + id=44, + color=[0, 255, 0]), + 45: + dict( + link=('left_pinky_finger2', 'left_pinky_finger3'), + id=45, + color=[0, 255, 0]), + 46: + dict( + link=('left_pinky_finger3', 'left_pinky_finger4'), + id=46, + color=[0, 255, 0]), + 47: + dict(link=('right_wrist', 'right_thumb1'), id=47, color=[255, 128, 0]), + 48: + dict( + link=('right_thumb1', 'right_thumb2'), id=48, color=[255, 128, 0]), + 49: + dict( + link=('right_thumb2', 'right_thumb3'), id=49, color=[255, 128, 0]), + 50: + dict( + link=('right_thumb3', 'right_thumb4'), id=50, color=[255, 128, 0]), + 51: + dict( + link=('right_wrist', 'right_forefinger1'), + id=51, + color=[255, 153, 255]), + 52: + dict( + link=('right_forefinger1', 'right_forefinger2'), + id=52, + color=[255, 153, 255]), + 53: + dict( + link=('right_forefinger2', 'right_forefinger3'), + id=53, + color=[255, 153, 255]), + 54: + dict( + link=('right_forefinger3', 'right_forefinger4'), + id=54, + color=[255, 153, 255]), + 55: + dict( + link=('right_wrist', 'right_middle_finger1'), + id=55, + color=[102, 178, 255]), + 56: + dict( + link=('right_middle_finger1', 'right_middle_finger2'), + id=56, + color=[102, 178, 255]), + 57: + dict( + link=('right_middle_finger2', 'right_middle_finger3'), + id=57, + color=[102, 178, 255]), + 58: + dict( + link=('right_middle_finger3', 'right_middle_finger4'), + id=58, + color=[102, 178, 255]), + 59: + dict( + link=('right_wrist', 'right_ring_finger1'), + id=59, + color=[255, 51, 51]), + 60: + dict( + link=('right_ring_finger1', 'right_ring_finger2'), + id=60, + color=[255, 51, 51]), + 61: + dict( + link=('right_ring_finger2', 'right_ring_finger3'), + id=61, + color=[255, 51, 51]), + 62: + dict( + link=('right_ring_finger3', 'right_ring_finger4'), + id=62, + color=[255, 51, 51]), + 63: + dict( + link=('right_wrist', 'right_pinky_finger1'), + id=63, + color=[0, 255, 0]), + 64: + dict( + link=('right_pinky_finger1', 'right_pinky_finger2'), + id=64, + color=[0, 255, 0]), + 65: + dict( + link=('right_pinky_finger2', 'right_pinky_finger3'), + id=65, + color=[0, 255, 0]), + 66: + dict( + link=('right_pinky_finger3', 'right_pinky_finger4'), + id=66, + color=[0, 255, 0]) + }, + joint_weights=[1.] * 136, + + # 'https://github.com/Fang-Haoshu/Halpe-FullBody/blob/master/' + # 'HalpeCOCOAPI/PythonAPI/halpecocotools/cocoeval.py#L245' + sigmas=[ + 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, + 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089, 0.08, 0.08, 0.08, + 0.089, 0.089, 0.089, 0.089, 0.089, 0.089, 0.015, 0.015, 0.015, 0.015, + 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, + 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, + 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, + 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, + 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, + 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, + 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, + 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, + 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, + 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, 0.015, + 0.015, 0.015, 0.015, 0.015, 0.015, 0.015 + ]) diff --git a/configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/halpe/hrnet_dark_halpe.md b/configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/halpe/hrnet_dark_halpe.md new file mode 100644 index 0000000000..1b22b4b53d --- /dev/null +++ b/configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/halpe/hrnet_dark_halpe.md @@ -0,0 +1,57 @@ + + +
+HRNet (CVPR'2019) + +```bibtex +@inproceedings{sun2019deep, + title={Deep high-resolution representation learning for human pose estimation}, + author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong}, + booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition}, + pages={5693--5703}, + year={2019} +} +``` + +
+ + + +
+DarkPose (CVPR'2020) + +```bibtex +@inproceedings{zhang2020distribution, + title={Distribution-aware coordinate representation for human pose estimation}, + author={Zhang, Feng and Zhu, Xiatian and Dai, Hanbin and Ye, Mao and Zhu, Ce}, + booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, + pages={7093--7102}, + year={2020} +} +``` + +
+ + + +
+Halpe (CVPR'2020) + +```bibtex +@inproceedings{li2020pastanet, + title={PaStaNet: Toward Human Activity Knowledge Engine}, + author={Li, Yong-Lu and Xu, Liang and Liu, Xinpeng and Huang, Xijie and Xu, Yue and Wang, Shiyi and Fang, Hao-Shu and Ma, Ze and Chen, Mingyang and Lu, Cewu}, + booktitle={CVPR}, + year={2020} +} +``` + +
+ +Results on Halpe v1.0 val with detector having human AP of 56.4 on COCO val2017 dataset + +| Arch | Input Size | Whole AP | Whole AR | ckpt | log | +| :---- | :--------: | :------: |:-------: |:------: | :------: | +| [pose_hrnet_w48_dark+](/configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/halpe/hrnet_w48_halpe_384x288_dark_plus.py) | 384x288 | 0.531 | 0.642 | [ckpt](https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_halpe_384x288_dark_plus-d13c2588_20211021.pth) | [log](https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_halpe_384x288_dark_plus_20211021.log.json) | + +Note: `+` means the model is first pre-trained on original COCO dataset, and then fine-tuned on Halpe dataset. We find this will lead to better performance. diff --git a/configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/halpe/hrnet_dark_halpe.yml b/configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/halpe/hrnet_dark_halpe.yml new file mode 100644 index 0000000000..3319c2a4e6 --- /dev/null +++ b/configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/halpe/hrnet_dark_halpe.yml @@ -0,0 +1,23 @@ +Collections: +- Metadata: + Architecture: + - HRNet + - DarkPose + Name: Wholebody 2D Keypoint topdown_heatmap halpe + Paper: + Title: Distribution-aware coordinate representation for human pose estimation + URL: http://openaccess.thecvf.com/content_CVPR_2020/html/Zhang_Distribution-Aware_Coordinate_Representation_for_Human_Pose_Estimation_CVPR_2020_paper.html + README: configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/halpe/hrnet_dark_halpe.md +Models: +- Config: configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/halpe/hrnet_w48_halpe_384x288_dark_plus.py + In Collection: Wholebody 2D Keypoint topdown_heatmap halpe + Metadata: + Training Data: Halpe + Name: topdown_heatmap_hrnet_w48_halpe_384x288_dark_plus + Results: + - Dataset: Halpe + Metrics: + Whole AP: 0.531 + Whole AR: 0.642 + Task: Wholebody 2D Keypoint + Weights: https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_halpe_384x288_dark_plus-d13c2588_20211021.pth diff --git a/configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/halpe/hrnet_w32_halpe_256x192.py b/configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/halpe/hrnet_w32_halpe_256x192.py new file mode 100644 index 0000000000..090f6c0c3c --- /dev/null +++ b/configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/halpe/hrnet_w32_halpe_256x192.py @@ -0,0 +1,174 @@ +_base_ = ['../../../../_base_/datasets/halpe.py'] +log_level = 'INFO' +load_from = None +resume_from = None +dist_params = dict(backend='nccl') +workflow = [('train', 1)] +checkpoint_config = dict(interval=10) +evaluation = dict(interval=10, metric='mAP', save_best='AP') + +optimizer = dict( + type='Adam', + lr=5e-4, +) +optimizer_config = dict(grad_clip=None) +# learning policy +lr_config = dict( + policy='step', + warmup='linear', + warmup_iters=500, + warmup_ratio=0.001, + step=[170, 200]) +total_epochs = 210 +log_config = dict( + interval=50, + hooks=[ + dict(type='TextLoggerHook'), + # dict(type='TensorboardLoggerHook') + ]) + +channel_cfg = dict( + num_output_channels=136, + dataset_joints=136, + dataset_channel=[ + list(range(136)), + ], + inference_channel=list(range(136))) + +# model settings +model = dict( + type='TopDown', + pretrained='https://download.openmmlab.com/mmpose/' + 'pretrain_models/hrnet_w32-36af842e.pth', + backbone=dict( + type='HRNet', + in_channels=3, + extra=dict( + stage1=dict( + num_modules=1, + num_branches=1, + block='BOTTLENECK', + num_blocks=(4, ), + num_channels=(64, )), + stage2=dict( + num_modules=1, + num_branches=2, + block='BASIC', + num_blocks=(4, 4), + num_channels=(32, 64)), + stage3=dict( + num_modules=4, + num_branches=3, + block='BASIC', + num_blocks=(4, 4, 4), + num_channels=(32, 64, 128)), + stage4=dict( + num_modules=3, + num_branches=4, + block='BASIC', + num_blocks=(4, 4, 4, 4), + num_channels=(32, 64, 128, 256))), + ), + keypoint_head=dict( + type='TopdownHeatmapSimpleHead', + in_channels=32, + out_channels=channel_cfg['num_output_channels'], + num_deconv_layers=0, + extra=dict(final_conv_kernel=1, ), + loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), + train_cfg=dict(), + test_cfg=dict( + flip_test=True, + post_process='default', + shift_heatmap=True, + modulate_kernel=11)) + +data_cfg = dict( + image_size=[192, 256], + heatmap_size=[48, 64], + num_output_channels=channel_cfg['num_output_channels'], + num_joints=channel_cfg['dataset_joints'], + dataset_channel=channel_cfg['dataset_channel'], + inference_channel=channel_cfg['inference_channel'], + soft_nms=False, + nms_thr=1.0, + oks_thr=0.9, + vis_thr=0.2, + use_gt_bbox=False, + det_bbox_thr=0.0, + bbox_file='data/coco/person_detection_results/' + 'COCO_val2017_detections_AP_H_56_person.json', +) + +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='TopDownRandomFlip', flip_prob=0.5), + dict( + type='TopDownHalfBodyTransform', + num_joints_half_body=8, + prob_half_body=0.3), + dict( + type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), + dict(type='TopDownAffine'), + dict(type='ToTensor'), + dict( + type='NormalizeTensor', + mean=[0.485, 0.456, 0.406], + std=[0.229, 0.224, 0.225]), + dict(type='TopDownGenerateTarget', sigma=2), + dict( + type='Collect', + keys=['img', 'target', 'target_weight'], + meta_keys=[ + 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', + 'rotation', 'bbox_score', 'flip_pairs' + ]), +] + +val_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='TopDownAffine'), + dict(type='ToTensor'), + dict( + type='NormalizeTensor', + mean=[0.485, 0.456, 0.406], + std=[0.229, 0.224, 0.225]), + dict( + type='Collect', + keys=['img'], + meta_keys=[ + 'image_file', 'center', 'scale', 'rotation', 'bbox_score', + 'flip_pairs' + ]), +] + +test_pipeline = val_pipeline + +data_root = 'data/halpe' +data = dict( + samples_per_gpu=64, + workers_per_gpu=2, + val_dataloader=dict(samples_per_gpu=32), + test_dataloader=dict(samples_per_gpu=32), + train=dict( + type='TopDownHalpeDataset', + ann_file=f'{data_root}/annotations/halpe_train_v1.json', + img_prefix=f'{data_root}/hico_20160224_det/images/train2015/', + data_cfg=data_cfg, + pipeline=train_pipeline, + dataset_info={{_base_.dataset_info}}), + val=dict( + type='TopDownHalpeDataset', + ann_file=f'{data_root}/annotations/halpe_val_v1.json', + img_prefix=f'{data_root}/val2017/', + data_cfg=data_cfg, + pipeline=val_pipeline, + dataset_info={{_base_.dataset_info}}), + test=dict( + type='TopDownHalpeDataset', + ann_file=f'{data_root}/annotations/halpe_val_v1.json', + img_prefix=f'{data_root}/val2017/', + data_cfg=data_cfg, + pipeline=val_pipeline, + dataset_info={{_base_.dataset_info}}), +) diff --git a/configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/halpe/hrnet_w48_halpe_384x288_dark_plus.py b/configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/halpe/hrnet_w48_halpe_384x288_dark_plus.py new file mode 100644 index 0000000000..d2698ef0f8 --- /dev/null +++ b/configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/halpe/hrnet_w48_halpe_384x288_dark_plus.py @@ -0,0 +1,173 @@ +_base_ = ['../../../../_base_/datasets/halpe.py'] +log_level = 'INFO' +load_from = 'https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_384x288_dark-741844ba_20200812.pth' # noqa: E501 +resume_from = None +dist_params = dict(backend='nccl') +workflow = [('train', 1)] +checkpoint_config = dict(interval=10) +evaluation = dict(interval=10, metric='mAP', save_best='AP') + +optimizer = dict( + type='Adam', + lr=5e-4, +) +optimizer_config = dict(grad_clip=None) +# learning policy +lr_config = dict( + policy='step', + warmup='linear', + warmup_iters=500, + warmup_ratio=0.001, + step=[170, 200]) +total_epochs = 210 +log_config = dict( + interval=50, + hooks=[ + dict(type='TextLoggerHook'), + # dict(type='TensorboardLoggerHook') + ]) + +channel_cfg = dict( + num_output_channels=136, + dataset_joints=136, + dataset_channel=[ + list(range(136)), + ], + inference_channel=list(range(136))) + +# model settings +model = dict( + type='TopDown', + pretrained=None, + backbone=dict( + type='HRNet', + in_channels=3, + extra=dict( + stage1=dict( + num_modules=1, + num_branches=1, + block='BOTTLENECK', + num_blocks=(4, ), + num_channels=(64, )), + stage2=dict( + num_modules=1, + num_branches=2, + block='BASIC', + num_blocks=(4, 4), + num_channels=(48, 96)), + stage3=dict( + num_modules=4, + num_branches=3, + block='BASIC', + num_blocks=(4, 4, 4), + num_channels=(48, 96, 192)), + stage4=dict( + num_modules=3, + num_branches=4, + block='BASIC', + num_blocks=(4, 4, 4, 4), + num_channels=(48, 96, 192, 384))), + ), + keypoint_head=dict( + type='TopdownHeatmapSimpleHead', + in_channels=48, + out_channels=channel_cfg['num_output_channels'], + num_deconv_layers=0, + extra=dict(final_conv_kernel=1, ), + loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), + train_cfg=dict(), + test_cfg=dict( + flip_test=True, + post_process='unbiased', + shift_heatmap=True, + modulate_kernel=17)) + +data_cfg = dict( + image_size=[288, 384], + heatmap_size=[72, 96], + num_output_channels=channel_cfg['num_output_channels'], + num_joints=channel_cfg['dataset_joints'], + dataset_channel=channel_cfg['dataset_channel'], + inference_channel=channel_cfg['inference_channel'], + soft_nms=False, + nms_thr=1.0, + oks_thr=0.9, + vis_thr=0.2, + use_gt_bbox=False, + det_bbox_thr=0.0, + bbox_file='data/coco/person_detection_results/' + 'COCO_val2017_detections_AP_H_56_person.json', +) + +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='TopDownRandomFlip', flip_prob=0.5), + dict( + type='TopDownHalfBodyTransform', + num_joints_half_body=8, + prob_half_body=0.3), + dict( + type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), + dict(type='TopDownAffine'), + dict(type='ToTensor'), + dict( + type='NormalizeTensor', + mean=[0.485, 0.456, 0.406], + std=[0.229, 0.224, 0.225]), + dict(type='TopDownGenerateTarget', sigma=3, unbiased_encoding=True), + dict( + type='Collect', + keys=['img', 'target', 'target_weight'], + meta_keys=[ + 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', + 'rotation', 'bbox_score', 'flip_pairs' + ]), +] + +val_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='TopDownAffine'), + dict(type='ToTensor'), + dict( + type='NormalizeTensor', + mean=[0.485, 0.456, 0.406], + std=[0.229, 0.224, 0.225]), + dict( + type='Collect', + keys=['img'], + meta_keys=[ + 'image_file', 'center', 'scale', 'rotation', 'bbox_score', + 'flip_pairs' + ]), +] + +test_pipeline = val_pipeline + +data_root = 'data/halpe' +data = dict( + samples_per_gpu=32, + workers_per_gpu=2, + val_dataloader=dict(samples_per_gpu=32), + test_dataloader=dict(samples_per_gpu=32), + train=dict( + type='TopDownHalpeDataset', + ann_file=f'{data_root}/annotations/halpe_train_v1.json', + img_prefix=f'{data_root}/hico_20160224_det/images/train2015/', + data_cfg=data_cfg, + pipeline=train_pipeline, + dataset_info={{_base_.dataset_info}}), + val=dict( + type='TopDownHalpeDataset', + ann_file=f'{data_root}/annotations/halpe_val_v1.json', + img_prefix=f'{data_root}/val2017/', + data_cfg=data_cfg, + pipeline=val_pipeline, + dataset_info={{_base_.dataset_info}}), + test=dict( + type='TopDownHalpeDataset', + ann_file=f'{data_root}/annotations/halpe_val_v1.json', + img_prefix=f'{data_root}/val2017/', + data_cfg=data_cfg, + pipeline=val_pipeline, + dataset_info={{_base_.dataset_info}}), +) diff --git a/docs/papers/datasets/halpe.md b/docs/papers/datasets/halpe.md new file mode 100644 index 0000000000..f71793fdbd --- /dev/null +++ b/docs/papers/datasets/halpe.md @@ -0,0 +1,17 @@ +# PaStaNet: Toward Human Activity Knowledge Engine + + + +
+Halpe (CVPR'2020) + +```bibtex +@inproceedings{li2020pastanet, + title={PaStaNet: Toward Human Activity Knowledge Engine}, + author={Li, Yong-Lu and Xu, Liang and Liu, Xinpeng and Huang, Xijie and Xu, Yue and Wang, Shiyi and Fang, Hao-Shu and Ma, Ze and Chen, Mingyang and Lu, Cewu}, + booktitle={CVPR}, + year={2020} +} +``` + +
diff --git a/docs/tasks/2d_wholebody_keypoint.md b/docs/tasks/2d_wholebody_keypoint.md index 3a3d47a7ef..e3d573ffbd 100644 --- a/docs/tasks/2d_wholebody_keypoint.md +++ b/docs/tasks/2d_wholebody_keypoint.md @@ -6,6 +6,7 @@ If your folder structure is different, you may need to change the corresponding MMPose supported datasets: - [COCO-WholeBody](#coco-wholebody) \[ [Homepage](https://github.com/jin-s13/COCO-WholeBody/) \] +- [Halpe](#halpe) \[ [Homepage](https://github.com/Fang-Haoshu/Halpe-FullBody/) \] ## COCO-WholeBody @@ -60,3 +61,65 @@ mmpose Please also install the latest version of [Extended COCO API](https://github.com/jin-s13/xtcocoapi) (version>=1.5) to support COCO-WholeBody evaluation: `pip install xtcocotools` + +## Halpe + + + +
+Halpe (CVPR'2020) + +```bibtex +@inproceedings{li2020pastanet, + title={PaStaNet: Toward Human Activity Knowledge Engine}, + author={Li, Yong-Lu and Xu, Liang and Liu, Xinpeng and Huang, Xijie and Xu, Yue and Wang, Shiyi and Fang, Hao-Shu and Ma, Ze and Chen, Mingyang and Lu, Cewu}, + booktitle={CVPR}, + year={2020} +} +``` + +
+ +For [Halpe](https://github.com/Fang-Haoshu/Halpe-FullBody/) dataset, please download images and annotations from [Halpe download](https://github.com/Fang-Haoshu/Halpe-FullBody). +The images of the training set are from [HICO-Det](https://drive.google.com/open?id=1QZcJmGVlF9f4h-XLWe9Gkmnmj2z1gSnk) and those of the validation set are from [COCO](http://images.cocodataset.org/zips/val2017.zip). +Download person detection result of COCO val2017 from [OneDrive](https://1drv.ms/f/s!AhIXJn_J-blWzzDXoz5BeFl8sWM-) or [GoogleDrive](https://drive.google.com/drive/folders/1fRUDNUDxe9fjqcRZ2bnF_TKMlO0nB_dk?usp=sharing). +Download and extract them under $MMPOSE/data, and make them look like this: + +```text +mmpose +├── mmpose +├── docs +├── tests +├── tools +├── configs +`── data + │── halpe + │-- annotations + │ │-- halpe_train_v1.json + │ |-- halpe_val_v1.json + |-- person_detection_results + | |-- COCO_val2017_detections_AP_H_56_person.json + │-- hico_20160224_det + │ │-- anno_bbox.mat + │ │-- anno.mat + │ │-- README + │ │-- images + │ │ │-- train2015 + │ │ │ │-- HICO_train2015_00000001.jpg + │ │ │ │-- HICO_train2015_00000002.jpg + │ │ │ │-- HICO_train2015_00000003.jpg + │ │ │ │-- ... + │ │ │-- test2015 + │ │-- tools + │ │-- ... + `-- val2017 + │-- 000000000139.jpg + │-- 000000000285.jpg + │-- 000000000632.jpg + │-- ... + +``` + +Please also install the latest version of [Extended COCO API](https://github.com/jin-s13/xtcocoapi) (version>=1.5) to support Halpe evaluation: + +`pip install xtcocotools` diff --git a/mmpose/datasets/datasets/__init__.py b/mmpose/datasets/datasets/__init__.py index 6f54e7a466..2833ab8785 100644 --- a/mmpose/datasets/datasets/__init__.py +++ b/mmpose/datasets/datasets/__init__.py @@ -18,10 +18,10 @@ MoshDataset) from .top_down import (TopDownAicDataset, TopDownCocoDataset, TopDownCocoWholeBodyDataset, TopDownCrowdPoseDataset, - TopDownH36MDataset, TopDownJhmdbDataset, - TopDownMhpDataset, TopDownMpiiDataset, - TopDownMpiiTrbDataset, TopDownOCHumanDataset, - TopDownPoseTrack18Dataset) + TopDownH36MDataset, TopDownHalpeDataset, + TopDownJhmdbDataset, TopDownMhpDataset, + TopDownMpiiDataset, TopDownMpiiTrbDataset, + TopDownOCHumanDataset, TopDownPoseTrack18Dataset) __all__ = [ 'TopDownCocoDataset', 'BottomUpCocoDataset', 'BottomUpMhpDataset', @@ -38,5 +38,6 @@ 'FaceWFLWDataset', 'FaceCOFWDataset', 'FaceCocoWholeBodyDataset', 'Body3DH36MDataset', 'AnimalHorse10Dataset', 'AnimalMacaqueDataset', 'AnimalFlyDataset', 'AnimalLocustDataset', 'AnimalZebraDataset', - 'AnimalATRWDataset', 'AnimalPoseDataset', 'TopDownH36MDataset' + 'AnimalATRWDataset', 'AnimalPoseDataset', 'TopDownH36MDataset', + 'TopDownHalpeDataset' ] diff --git a/mmpose/datasets/datasets/top_down/__init__.py b/mmpose/datasets/datasets/top_down/__init__.py index 72b99d4a8b..3228d070f2 100644 --- a/mmpose/datasets/datasets/top_down/__init__.py +++ b/mmpose/datasets/datasets/top_down/__init__.py @@ -4,6 +4,7 @@ from .topdown_coco_wholebody_dataset import TopDownCocoWholeBodyDataset from .topdown_crowdpose_dataset import TopDownCrowdPoseDataset from .topdown_h36m_dataset import TopDownH36MDataset +from .topdown_halpe_dataset import TopDownHalpeDataset from .topdown_jhmdb_dataset import TopDownJhmdbDataset from .topdown_mhp_dataset import TopDownMhpDataset from .topdown_mpii_dataset import TopDownMpiiDataset @@ -15,5 +16,6 @@ 'TopDownAicDataset', 'TopDownCocoDataset', 'TopDownCocoWholeBodyDataset', 'TopDownCrowdPoseDataset', 'TopDownMpiiDataset', 'TopDownMpiiTrbDataset', 'TopDownOCHumanDataset', 'TopDownPoseTrack18Dataset', - 'TopDownJhmdbDataset', 'TopDownMhpDataset', 'TopDownH36MDataset' + 'TopDownJhmdbDataset', 'TopDownMhpDataset', 'TopDownH36MDataset', + 'TopDownHalpeDataset' ] diff --git a/mmpose/datasets/datasets/top_down/topdown_coco_wholebody_dataset.py b/mmpose/datasets/datasets/top_down/topdown_coco_wholebody_dataset.py index ab3b10aa6e..126a0ce77a 100644 --- a/mmpose/datasets/datasets/top_down/topdown_coco_wholebody_dataset.py +++ b/mmpose/datasets/datasets/top_down/topdown_coco_wholebody_dataset.py @@ -105,6 +105,8 @@ def _load_coco_keypoint_annotation_kernel(self, img_id): # sanitize bboxes valid_objs = [] for obj in objs: + if 'bbox' not in obj: + continue x, y, w, h = obj['bbox'] x1 = max(0, x) y1 = max(0, y) @@ -118,6 +120,8 @@ def _load_coco_keypoint_annotation_kernel(self, img_id): rec = [] bbox_id = 0 for obj in objs: + if 'keypoints' not in obj: + continue if max(obj['keypoints']) == 0: continue joints_3d = np.zeros((num_joints, 3), dtype=np.float32) diff --git a/mmpose/datasets/datasets/top_down/topdown_halpe_dataset.py b/mmpose/datasets/datasets/top_down/topdown_halpe_dataset.py new file mode 100644 index 0000000000..96267a10a1 --- /dev/null +++ b/mmpose/datasets/datasets/top_down/topdown_halpe_dataset.py @@ -0,0 +1,76 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import warnings + +from mmcv import Config + +from ...builder import DATASETS +from .topdown_coco_dataset import TopDownCocoDataset + + +@DATASETS.register_module() +class TopDownHalpeDataset(TopDownCocoDataset): + """HalpeDataset for top-down pose estimation. + + 'https://github.com/Fang-Haoshu/Halpe-FullBody' + + The dataset loads raw features and apply specified transforms + to return a dict containing the image tensors and other information. + + In total, we have 136 keypoints for wholebody pose estimation. + + Halpe keypoint indexes:: + 0-19: 20 body keypoints + 20-25: 6 foot keypoints + 26-93: 68 face keypoints + 94-135: 42 hand keypoints + + Args: + ann_file (str): Path to the annotation file. + img_prefix (str): Path to a directory where images are held. + Default: None. + data_cfg (dict): config + pipeline (list[dict | callable]): A sequence of data transforms. + dataset_info (DatasetInfo): A class containing all dataset info. + test_mode (bool): Store True when building test or + validation dataset. Default: False. + """ + + def __init__(self, + ann_file, + img_prefix, + data_cfg, + pipeline, + dataset_info=None, + test_mode=False): + + if dataset_info is None: + warnings.warn( + 'dataset_info is missing. ' + 'Check https://github.com/open-mmlab/mmpose/pull/663 ' + 'for details.', DeprecationWarning) + cfg = Config.fromfile('configs/_base_/datasets/halpe.py') + dataset_info = cfg._cfg_dict['dataset_info'] + + super(TopDownCocoDataset, self).__init__( + ann_file, + img_prefix, + data_cfg, + pipeline, + dataset_info=dataset_info, + test_mode=test_mode) + + self.use_gt_bbox = data_cfg['use_gt_bbox'] + self.bbox_file = data_cfg['bbox_file'] + self.det_bbox_thr = data_cfg.get('det_bbox_thr', 0.0) + self.use_nms = data_cfg.get('use_nms', True) + self.soft_nms = data_cfg['soft_nms'] + self.nms_thr = data_cfg['nms_thr'] + self.oks_thr = data_cfg['oks_thr'] + self.vis_thr = data_cfg['vis_thr'] + + self.ann_info['use_different_joint_weights'] = False + + self.db = self._get_db() + + print(f'=> num_images: {self.num_images}') + print(f'=> load {len(self.db)} samples') diff --git a/model-index.yml b/model-index.yml index 1214ea4ce7..4fa7aaf012 100644 --- a/model-index.yml +++ b/model-index.yml @@ -127,3 +127,4 @@ Import: - configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/coco-wholebody/hrnet_coco-wholebody.yml - configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/coco-wholebody/hrnet_dark_coco-wholebody.yml - configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/coco-wholebody/resnet_coco-wholebody.yml +- configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/halpe/hrnet_dark_halpe.yml diff --git a/tests/data/halpe/test_halpe.json b/tests/data/halpe/test_halpe.json new file mode 100644 index 0000000000..85b9e9d607 --- /dev/null +++ b/tests/data/halpe/test_halpe.json @@ -0,0 +1,5991 @@ +{ + "categories": [ + { + "supercategory": "person", + "id": 1, + "name": "person", + "keypoints": [], + "skeleton": [] + } + ], + "images": [ + { + "license": 4, + "file_name": "000000000785.jpg", + "coco_url": "http://images.cocodataset.org/val2017/000000000785.jpg", + "height": 425, + "width": 640, + "date_captured": "2013-11-19 21:22:42", + "flickr_url": "http://farm8.staticflickr.com/7015/6795644157_f019453ae7_z.jpg", + "id": 785 + }, + { + "license": 3, + "file_name": "000000040083.jpg", + "coco_url": "http://images.cocodataset.org/val2017/000000040083.jpg", + "height": 333, + "width": 500, + "date_captured": "2013-11-18 03:30:24", + "flickr_url": "http://farm1.staticflickr.com/116/254881838_e21c6d17b8_z.jpg", + "id": 40083 + }, + { + "license": 1, + "file_name": "000000196141.jpg", + "coco_url": "http://images.cocodataset.org/val2017/000000196141.jpg", + "height": 429, + "width": 640, + "date_captured": "2013-11-22 22:37:15", + "flickr_url": "http://farm4.staticflickr.com/3310/3611902235_57d4ae496d_z.jpg", + "id": 196141 + }, + { + "license": 3, + "file_name": "000000197388.jpg", + "coco_url": "http://images.cocodataset.org/val2017/000000197388.jpg", + "height": 392, + "width": 640, + "date_captured": "2013-11-19 20:10:37", + "flickr_url": "http://farm9.staticflickr.com/8375/8507321836_5b8b13188f_z.jpg", + "id": 197388 + } + ], + "annotations": [ + { + "num_keypoints": 17, + "area": 27789.11055, + "iscrowd": 0, + "keypoints": [ + 367, + 81, + 2, + 374, + 73, + 2, + 360, + 75, + 2, + 386, + 78, + 2, + 356, + 81, + 2, + 399, + 108, + 2, + 358, + 129, + 2, + 433, + 142, + 2, + 341, + 159, + 2, + 449, + 165, + 2, + 309, + 178, + 2, + 424, + 203, + 2, + 393, + 214, + 2, + 429, + 294, + 2, + 367, + 273, + 2, + 466, + 362, + 2, + 396, + 341, + 2, + 370, + 52, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 431, + 378, + 2, + 364, + 366, + 2, + 437, + 383, + 2, + 358, + 361, + 2, + 488, + 372, + 2, + 414, + 353, + 2, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 382.0, + 88.0, + 0.0, + 384.0, + 85.0, + 0.0, + 386.0, + 80.0, + 0.0, + 386.0, + 76.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 367.0, + 76.0, + 0.0, + 367.0, + 79.0, + 0.0, + 367.0, + 81.0, + 0.0, + 364.0, + 83.0, + 0.0, + 366.0, + 83.0, + 0.0, + 367.0, + 84.0, + 0.0, + 369.0, + 83.0, + 0.0, + 371.0, + 83.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 363.0, + 88.0, + 0.0, + 364.0, + 86.0, + 0.0, + 366.0, + 86.0, + 0.0, + 368.0, + 86.0, + 0.0, + 369.0, + 86.0, + 0.0, + 372.0, + 86.0, + 0.0, + 376.0, + 86.0, + 0.0, + 373.0, + 89.0, + 0.0, + 371.0, + 90.0, + 0.0, + 368.0, + 90.0, + 0.0, + 366.0, + 90.0, + 0.0, + 364.0, + 89.0, + 0.0, + 364.0, + 88.0, + 0.0, + 366.0, + 87.0, + 0.0, + 368.0, + 87.0, + 0.0, + 370.0, + 87.0, + 0.0, + 375.0, + 87.0, + 0.0, + 370.0, + 89.0, + 0.0, + 368.0, + 89.0, + 0.0, + 367.0, + 89.0, + 0.0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 435, + 172, + 2, + 441, + 178, + 2, + 442, + 160, + 2, + 444, + 170, + 2, + 444, + 173, + 2, + 444, + 178, + 2, + 447, + 161, + 2, + 448, + 170, + 2, + 448, + 174, + 2, + 448, + 180, + 2, + 453, + 161, + 2, + 453, + 170, + 2, + 452, + 176, + 2, + 453, + 181, + 2, + 459, + 163, + 2, + 459, + 171, + 2, + 458, + 176, + 2, + 456, + 182, + 2, + 306, + 188, + 2, + 302, + 181, + 2, + 298, + 179, + 2, + 293, + 183, + 2, + 290, + 188, + 2, + 291, + 174, + 2, + 285, + 180, + 2, + 285, + 185, + 2, + 290, + 189, + 2, + 283, + 177, + 2, + 282, + 185, + 2, + 285, + 190, + 2, + 290, + 194, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ], + "image_id": 785, + "bbox": [ + 280.79, + 44.73, + 218.7, + 346.68 + ], + "category_id": 1, + "id": 442619 + }, + { + "num_keypoints": 14, + "area": 11025.219, + "iscrowd": 0, + "keypoints": [ + 99, + 144, + 2, + 104, + 141, + 2, + 96, + 137, + 2, + 0, + 0, + 0, + 78, + 133, + 2, + 56, + 161, + 2, + 81, + 162, + 2, + 0, + 0, + 0, + 103, + 208, + 2, + 116, + 204, + 2, + 0, + 0, + 0, + 57, + 246, + 1, + 82, + 259, + 1, + 137, + 219, + 2, + 138, + 247, + 2, + 177, + 256, + 2, + 158, + 296, + 1, + 106, + 120, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 207, + 256, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 184, + 272, + 2, + 0, + 0, + 0, + 82, + 130, + 2, + 80, + 134, + 2, + 80, + 139, + 2, + 80, + 143, + 2, + 81, + 147, + 2, + 82, + 151, + 2, + 85, + 154, + 2, + 88, + 156, + 2, + 92, + 158, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 94, + 131, + 2, + 97, + 131, + 2, + 98, + 131, + 2, + 100, + 133, + 2, + 101, + 134, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 101, + 139, + 2, + 100, + 142, + 2, + 99, + 144, + 2, + 98, + 146, + 2, + 96, + 147, + 2, + 97, + 147, + 2, + 98, + 148, + 2, + 99, + 148, + 2, + 99, + 148, + 2, + 93, + 137, + 2, + 95, + 136, + 2, + 97, + 136, + 2, + 97, + 138, + 2, + 96, + 138, + 2, + 95, + 138, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 89, + 149, + 2, + 92, + 149, + 2, + 95, + 150, + 2, + 96, + 150, + 2, + 97, + 151, + 2, + 97, + 152, + 2, + 97, + 153, + 2, + 96, + 153, + 2, + 96, + 153, + 2, + 94, + 153, + 2, + 93, + 153, + 2, + 91, + 151, + 2, + 90, + 149, + 2, + 95, + 150, + 2, + 96, + 151, + 2, + 97, + 151, + 2, + 97, + 153, + 2, + 96, + 153, + 2, + 94, + 153, + 2, + 94, + 152, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 118, + 198, + 2, + 113, + 197, + 2, + 109, + 197, + 2, + 0, + 0, + 0, + 118, + 202, + 2, + 111, + 201, + 2, + 106, + 201, + 2, + 0, + 0, + 0, + 117, + 206, + 2, + 111, + 205, + 2, + 108, + 205, + 2, + 104, + 203, + 2, + 116, + 209, + 2, + 110, + 209, + 2, + 107, + 208, + 2, + 104, + 206, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ], + "image_id": 40083, + "bbox": [ + 38.08, + 110.95, + 174.71, + 174.71 + ], + "category_id": 1, + "id": 198196 + }, + { + "num_keypoints": 15, + "area": 10171.9544, + "iscrowd": 0, + "keypoints": [ + 343, + 164, + 2, + 348, + 160, + 2, + 340, + 160, + 2, + 359, + 163, + 2, + 332, + 164, + 2, + 370, + 189, + 2, + 334, + 190, + 2, + 358, + 236, + 2, + 348, + 234, + 2, + 339, + 270, + 2, + 330, + 262, + 2, + 378, + 262, + 2, + 343, + 254, + 2, + 338, + 280, + 2, + 283, + 272, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 343, + 143, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 332.3577977797564, + 162.3496914134306, + 2.0, + 332.8988608117197, + 165.6187214570887, + 2.0, + 333.63467933804384, + 168.74800139782477, + 2.0, + 334.44826124602673, + 171.62306650199142, + 2.0, + 335.45694729674096, + 174.28548183067173, + 2.0, + 336.96602223714194, + 176.06009946336934, + 2.0, + 339.1693873087565, + 177.1661381740196, + 2.0, + 342.3967300714231, + 178.20855305989585, + 2.0, + 346.46408769196154, + 178.59725353764554, + 2.0, + 349.8700014600567, + 177.54131727031634, + 2.0, + 352.5932256960401, + 176.49227677887563, + 2.0, + 354.83135782877605, + 175.44453310499006, + 2.0, + 356.3679296755323, + 173.84137070599724, + 2.0, + 357.0065454221239, + 171.40940037147672, + 2.0, + 357.534409347235, + 168.54578019684436, + 2.0, + 357.7505070106656, + 165.60219732546338, + 2.0, + 357.9972831576478, + 162.53520322313494, + 2.0, + 334.98978292427813, + 157.50515154670268, + 2.0, + 336.268189015108, + 155.9984682569317, + 2.0, + 338.20047804888554, + 155.20954518037684, + 2.0, + 339.8509974460976, + 155.23421301748238, + 2.0, + 341.352836967917, + 155.51378012264476, + 2.0, + 347.8451109044692, + 155.22197044222963, + 2.0, + 349.3337133669386, + 154.8293061798694, + 2.0, + 351.12965129777496, + 154.6547285491345, + 2.0, + 353.1635732613358, + 155.35309825224036, + 2.0, + 354.5697377522786, + 156.92000379375384, + 2.0, + 344.713427734375, + 159.3260030409869, + 2.0, + 344.74998306573605, + 161.3128111596201, + 2.0, + 344.9170358096852, + 163.04858473235487, + 2.0, + 344.9786475088082, + 164.92118542241116, + 2.0, + 342.8344047097599, + 167.29107576258042, + 2.0, + 343.73243414186965, + 167.34131457758886, + 2.0, + 345.013671875, + 167.60332833084405, + 2.0, + 345.8795548981311, + 167.26825794893153, + 2.0, + 346.9039867326325, + 167.04604671702666, + 2.0, + 337.4534390917011, + 160.08626361921722, + 2.0, + 338.55446807262945, + 159.17182970233992, + 2.0, + 340.002108854406, + 159.25801017611636, + 2.0, + 341.49895665785846, + 160.03499301087624, + 2.0, + 340.23350459080115, + 160.5913200228822, + 2.0, + 338.5602124083276, + 160.56629581825405, + 2.0, + 347.86048488242955, + 159.88770386938955, + 2.0, + 349.3879867254519, + 159.04122164857154, + 2.0, + 350.88049507889093, + 158.927533976237, + 2.0, + 352.11961969113815, + 159.93540822945388, + 2.0, + 350.849705954159, + 160.3235902374866, + 2.0, + 349.1870314654182, + 160.32544540704464, + 2.0, + 340.80742998310166, + 172.02484322342218, + 2.0, + 342.28591649672563, + 170.90962129480698, + 2.0, + 344.0934833302217, + 170.10430531221277, + 2.0, + 345.1530334472656, + 170.32844890519684, + 2.0, + 345.8770950616575, + 170.0848247453278, + 2.0, + 347.8689553653493, + 170.66106716978783, + 2.0, + 349.58350770239736, + 171.62832581763175, + 2.0, + 348.09330994849114, + 172.68533762015548, + 2.0, + 346.88256608551626, + 173.17178057502298, + 2.0, + 345.6372661515778, + 173.27078642003676, + 2.0, + 343.9210619159773, + 173.28780972349878, + 2.0, + 342.63790340049593, + 172.8480547736673, + 2.0, + 341.26428671444165, + 171.89147685929842, + 2.0, + 343.8292683320887, + 171.36270207423792, + 2.0, + 345.2252255308862, + 171.2339672013825, + 2.0, + 346.42121037501914, + 171.26879086961932, + 2.0, + 349.3406477385876, + 171.65391995299098, + 2.0, + 346.50171341241577, + 171.7467015883502, + 2.0, + 345.33072832892924, + 171.8389222986558, + 2.0, + 343.8844602697036, + 171.8535089231005, + 2.0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ], + "image_id": 40083, + "bbox": [ + 257.76, + 139.06, + 140.05, + 154.21 + ], + "category_id": 1, + "id": 230195 + }, + { + "num_keypoints": 0, + "area": 491.2669, + "iscrowd": 0, + "keypoints": [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ], + "image_id": 40083, + "bbox": [ + 275.17, + 126.5, + 10.69, + 68.26 + ], + "category_id": 1, + "id": 1202706 + }, + { + "num_keypoints": 15, + "area": 17123.92955, + "iscrowd": 0, + "keypoints": [ + 297, + 111, + 2, + 299, + 106, + 2, + 0, + 0, + 0, + 314, + 108, + 2, + 0, + 0, + 0, + 329, + 141, + 2, + 346, + 125, + 2, + 295, + 164, + 2, + 323, + 130, + 2, + 266, + 155, + 2, + 279, + 143, + 2, + 329, + 225, + 2, + 331, + 221, + 2, + 327, + 298, + 2, + 283, + 269, + 2, + 398, + 327, + 2, + 288, + 349, + 2, + 309, + 78, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 399, + 363, + 2, + 261, + 361, + 2, + 402, + 360, + 2, + 254, + 359, + 2, + 408, + 327, + 2, + 296, + 358, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 308, + 121, + 2, + 310, + 119, + 2, + 311, + 117, + 2, + 312, + 115, + 2, + 313, + 112, + 2, + 313, + 110, + 2, + 314, + 108, + 2, + 313, + 105, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 298, + 101, + 2, + 300, + 101, + 2, + 302, + 101, + 2, + 303, + 101, + 2, + 305, + 103, + 2, + 297, + 104, + 2, + 297, + 106, + 2, + 296, + 109, + 2, + 296, + 111, + 2, + 299, + 111, + 2, + 300, + 111, + 2, + 298, + 112, + 2, + 299, + 112, + 2, + 300, + 112, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 298, + 104, + 2, + 300, + 103, + 2, + 302, + 104, + 2, + 304, + 106, + 2, + 302, + 106, + 2, + 300, + 106, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 264, + 156, + 2, + 263, + 147, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 253, + 149, + 2, + 248, + 147, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 253, + 154, + 2, + 245, + 155, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 251, + 157, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 252, + 160, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 276, + 146, + 2, + 270, + 150, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 268, + 139, + 2, + 262, + 145, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ], + "image_id": 196141, + "bbox": [ + 247.76, + 74.23, + 169.67, + 300.78 + ], + "category_id": 1, + "id": 460541 + }, + { + "num_keypoints": 15, + "area": 2789.0208, + "iscrowd": 0, + "keypoints": [ + 589, + 113, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 595, + 112, + 1, + 584, + 110, + 2, + 598, + 123, + 2, + 579, + 119, + 2, + 594, + 141, + 2, + 570, + 137, + 2, + 576, + 135, + 2, + 585, + 139, + 2, + 590, + 157, + 2, + 574, + 156, + 2, + 589, + 192, + 2, + 565, + 189, + 1, + 587, + 222, + 1, + 557, + 219, + 1, + 589, + 102, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 584, + 111, + 2, + 584, + 112, + 2, + 584, + 113, + 2, + 584, + 115, + 2, + 585, + 116, + 2, + 586, + 117, + 2, + 587, + 118, + 2, + 588, + 119, + 2, + 589, + 119, + 2, + 591, + 119, + 2, + 592, + 118, + 2, + 593, + 117, + 2, + 593, + 116, + 2, + 594, + 115, + 2, + 594, + 113, + 2, + 594, + 112, + 2, + 594, + 110, + 2, + 584, + 108, + 2, + 585, + 108, + 2, + 587, + 108, + 2, + 588, + 108, + 2, + 589, + 108, + 2, + 591, + 109, + 2, + 592, + 108, + 2, + 593, + 108, + 2, + 593, + 109, + 2, + 594, + 109, + 2, + 589, + 110, + 2, + 589, + 111, + 2, + 589, + 112, + 2, + 589, + 112, + 2, + 588, + 113, + 2, + 589, + 113, + 2, + 589, + 113, + 2, + 590, + 113, + 2, + 590, + 113, + 2, + 585, + 110, + 2, + 586, + 109, + 2, + 587, + 109, + 2, + 588, + 110, + 2, + 587, + 110, + 2, + 586, + 110, + 2, + 590, + 110, + 2, + 591, + 109, + 2, + 592, + 109, + 2, + 594, + 110, + 2, + 592, + 110, + 2, + 591, + 110, + 2, + 587, + 115, + 2, + 588, + 115, + 2, + 589, + 114, + 2, + 589, + 114, + 2, + 590, + 114, + 2, + 591, + 115, + 2, + 591, + 115, + 2, + 591, + 115, + 2, + 590, + 116, + 2, + 589, + 116, + 2, + 589, + 116, + 2, + 588, + 116, + 2, + 587, + 115, + 2, + 589, + 115, + 2, + 589, + 115, + 2, + 590, + 115, + 2, + 591, + 115, + 2, + 590, + 116, + 2, + 589, + 116, + 2, + 589, + 116, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ], + "image_id": 196141, + "bbox": [ + 555.57, + 99.84, + 48.32, + 113.05 + ], + "category_id": 1, + "id": 488308 + }, + { + "num_keypoints": 0, + "area": 285.7906, + "iscrowd": 0, + "keypoints": [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ], + "image_id": 196141, + "bbox": [ + 440.85, + 73.13, + 16.79, + 32.45 + ], + "category_id": 1, + "id": 508900 + }, + { + "num_keypoints": 12, + "area": 21608.94075, + "iscrowd": 0, + "keypoints": [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 552, + 234, + 2, + 0, + 0, + 0, + 531, + 262, + 2, + 600, + 283, + 2, + 480, + 260, + 2, + 622, + 336, + 2, + 466, + 242, + 2, + 0, + 0, + 0, + 546, + 365, + 2, + 592, + 371, + 2, + 470, + 351, + 2, + 551, + 330, + 2, + 519, + 394, + 2, + 589, + 391, + 2, + 575, + 211, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 498, + 408, + 2, + 0, + 0, + 0, + 534, + 395, + 2, + 587, + 401, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ], + "image_id": 196141, + "bbox": [ + 453.77, + 206.81, + 177.23, + 210.87 + ], + "category_id": 1, + "id": 1717641 + }, + { + "num_keypoints": 17, + "area": 1870.14015, + "iscrowd": 0, + "keypoints": [ + 48, + 79, + 2, + 50, + 77, + 2, + 46, + 77, + 2, + 54, + 78, + 2, + 45, + 78, + 2, + 57, + 90, + 2, + 42, + 90, + 2, + 63, + 103, + 2, + 42, + 105, + 2, + 56, + 113, + 2, + 49, + 112, + 2, + 55, + 117, + 2, + 44, + 117, + 2, + 55, + 140, + 2, + 47, + 140, + 2, + 56, + 160, + 2, + 49, + 159, + 2, + 47, + 71, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ], + "image_id": 196141, + "bbox": [ + 36.12, + 67.59, + 30.41, + 96.08 + ], + "category_id": 1, + "id": 1724673 + }, + { + "num_keypoints": 16, + "area": 14250.29385, + "iscrowd": 0, + "keypoints": [ + 334, + 135, + 2, + 340, + 129, + 2, + 331, + 129, + 2, + 0, + 0, + 0, + 319, + 123, + 2, + 340, + 146, + 2, + 292, + 133, + 2, + 353, + 164, + 2, + 246, + 144, + 2, + 354, + 197, + 2, + 250, + 185, + 2, + 293, + 197, + 2, + 265, + 187, + 2, + 305, + 252, + 2, + 231, + 254, + 2, + 293, + 321, + 2, + 193, + 297, + 2, + 333, + 109, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 299, + 332, + 2, + 185, + 309, + 2, + 310, + 333, + 2, + 176, + 303, + 2, + 287, + 328, + 2, + 198, + 303, + 2, + 321, + 127, + 2, + 321, + 130, + 2, + 321, + 133, + 2, + 321, + 136, + 2, + 322, + 138, + 2, + 324, + 140, + 2, + 326, + 142, + 2, + 329, + 143, + 2, + 332, + 143, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 328, + 125, + 2, + 330, + 125, + 2, + 331, + 126, + 2, + 333, + 126, + 2, + 335, + 127, + 2, + 339, + 128, + 2, + 340, + 127, + 2, + 342, + 126, + 2, + 343, + 126, + 2, + 345, + 125, + 2, + 336, + 130, + 2, + 336, + 132, + 2, + 337, + 134, + 2, + 338, + 136, + 2, + 334, + 138, + 2, + 335, + 138, + 2, + 337, + 138, + 2, + 338, + 137, + 2, + 339, + 138, + 2, + 329, + 127, + 2, + 331, + 127, + 2, + 333, + 128, + 2, + 334, + 129, + 2, + 332, + 130, + 2, + 331, + 129, + 2, + 339, + 129, + 2, + 341, + 127, + 2, + 342, + 127, + 2, + 344, + 127, + 2, + 342, + 129, + 2, + 341, + 129, + 2, + 329, + 139, + 2, + 331, + 139, + 2, + 333, + 139, + 2, + 334, + 139, + 2, + 334, + 139, + 2, + 335, + 139, + 2, + 336, + 139, + 2, + 335, + 140, + 2, + 334, + 141, + 2, + 333, + 141, + 2, + 333, + 141, + 2, + 331, + 141, + 2, + 330, + 139, + 2, + 333, + 139, + 2, + 334, + 140, + 2, + 334, + 139, + 2, + 336, + 140, + 2, + 334, + 140, + 2, + 334, + 141, + 2, + 331, + 141, + 2, + 0, + 0, + 0, + 349, + 202, + 2, + 345, + 203, + 2, + 342, + 207, + 2, + 338, + 212, + 2, + 349, + 214, + 2, + 341, + 219, + 2, + 336, + 219, + 2, + 333, + 218, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 250, + 187, + 2, + 255, + 188, + 2, + 260, + 189, + 2, + 264, + 194, + 2, + 268, + 201, + 2, + 254, + 193, + 2, + 256, + 201, + 2, + 260, + 205, + 2, + 0, + 0, + 0, + 252, + 193, + 2, + 252, + 201, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 247, + 193, + 2, + 248, + 200, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ], + "image_id": 197388, + "bbox": [ + 139.41, + 102.25, + 222.39, + 241.57 + ], + "category_id": 1, + "id": 437295 + }, + { + "num_keypoints": 16, + "area": 3404.869, + "iscrowd": 0, + "keypoints": [ + 345, + 92, + 2, + 350, + 87, + 2, + 341, + 87, + 2, + 0, + 0, + 0, + 330, + 83, + 2, + 357, + 94, + 2, + 316, + 92, + 2, + 357, + 104, + 2, + 291, + 123, + 1, + 351, + 133, + 2, + 281, + 136, + 1, + 326, + 131, + 1, + 305, + 128, + 1, + 336, + 152, + 1, + 303, + 171, + 1, + 318, + 206, + 2, + 294, + 211, + 1, + 344, + 70, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 320, + 214, + 2, + 0, + 0, + 0, + 328, + 213, + 2, + 0, + 0, + 0, + 313, + 210, + 2, + 0, + 0, + 0, + 333, + 85, + 2, + 333, + 87, + 2, + 333, + 89, + 2, + 334, + 92, + 2, + 335, + 95, + 2, + 337, + 97, + 2, + 338, + 98, + 2, + 341, + 99, + 2, + 343, + 100, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 337, + 86, + 2, + 339, + 85, + 2, + 341, + 85, + 2, + 342, + 86, + 2, + 344, + 87, + 2, + 348, + 87, + 2, + 349, + 86, + 2, + 350, + 85, + 2, + 351, + 85, + 2, + 353, + 84, + 2, + 345, + 88, + 2, + 345, + 90, + 2, + 345, + 92, + 2, + 345, + 94, + 2, + 342, + 94, + 2, + 343, + 94, + 2, + 345, + 95, + 2, + 346, + 94, + 2, + 347, + 94, + 2, + 337, + 87, + 2, + 339, + 86, + 2, + 341, + 86, + 2, + 343, + 88, + 2, + 341, + 88, + 2, + 340, + 88, + 2, + 348, + 88, + 2, + 349, + 86, + 2, + 351, + 86, + 2, + 353, + 86, + 2, + 351, + 87, + 2, + 350, + 88, + 2, + 340, + 97, + 2, + 341, + 96, + 2, + 343, + 96, + 2, + 344, + 96, + 2, + 345, + 96, + 2, + 346, + 96, + 2, + 346, + 97, + 2, + 346, + 98, + 2, + 345, + 98, + 2, + 344, + 98, + 2, + 343, + 98, + 2, + 341, + 98, + 2, + 341, + 97, + 2, + 343, + 96, + 2, + 344, + 96, + 2, + 345, + 96, + 2, + 346, + 97, + 2, + 345, + 98, + 2, + 344, + 98, + 2, + 343, + 98, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ], + "image_id": 197388, + "bbox": [ + 287.17, + 61.52, + 74.88, + 165.61 + ], + "category_id": 1, + "id": 467657 + }, + { + "num_keypoints": 15, + "area": 8913.98475, + "iscrowd": 0, + "keypoints": [ + 591, + 78, + 2, + 594, + 74, + 2, + 586, + 74, + 2, + 0, + 0, + 0, + 573, + 70, + 2, + 598, + 86, + 2, + 566, + 93, + 2, + 626, + 105, + 2, + 546, + 126, + 2, + 0, + 0, + 0, + 561, + 150, + 2, + 582, + 150, + 2, + 557, + 154, + 2, + 606, + 194, + 2, + 558, + 209, + 1, + 591, + 252, + 2, + 539, + 262, + 1, + 587, + 57, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 600, + 262, + 2, + 0, + 0, + 0, + 604, + 261, + 2, + 0, + 0, + 0, + 586, + 262, + 2, + 0, + 0, + 0, + 576.0, + 73.0, + 2.0, + 577.0, + 76.0, + 2.0, + 577.0, + 78.0, + 2.0, + 577.0, + 81.0, + 2.0, + 579.0, + 83.0, + 2.0, + 580.0, + 85.0, + 2.0, + 583.0, + 86.0, + 2.0, + 585.0, + 87.0, + 2.0, + 588.0, + 88.0, + 2.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 590.0, + 76.0, + 0.0, + 590.0, + 77.0, + 0.0, + 591.0, + 79.0, + 0.0, + 591.0, + 80.0, + 0.0, + 587.0, + 81.0, + 0.0, + 589.0, + 81.0, + 0.0, + 591.0, + 81.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 0.0, + 586.8761575736252, + 83.61172634947533, + 2.0, + 588.9412473790786, + 83.41106519512101, + 2.0, + 590.7724136651731, + 82.86258592792586, + 2.0, + 591.6996507831648, + 82.73443932626762, + 2.0, + 592.2456105550131, + 82.31442081227021, + 2.0, + 593.6493129356235, + 81.90362788181679, + 2.0, + 594.2114473230698, + 81.26071885052849, + 2.0, + 594.1276526357614, + 83.53407437193627, + 2.0, + 593.6044897939645, + 84.44948682598039, + 2.0, + 592.6541667265051, + 84.92630393832337, + 2.0, + 590.9756801829618, + 85.08662594065947, + 2.0, + 589.348352170458, + 84.76877788468903, + 2.0, + 587.2321394378064, + 83.56702886843215, + 2.0, + 590.3445832495596, + 83.57368678672641, + 2.0, + 591.8126301484949, + 83.20736933689491, + 2.0, + 592.7565172980813, + 82.68511125153186, + 2.0, + 594.1612270579618, + 81.3825154024012, + 2.0, + 593.0988272872626, + 83.2510259291705, + 2.0, + 592.1117610557407, + 83.63720194498697, + 2.0, + 590.626023236443, + 84.00301465801164, + 2.0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 559, + 151, + 2, + 565, + 151, + 2, + 569, + 153, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 568, + 156, + 2, + 570, + 162, + 2, + 571, + 166, + 2, + 571, + 169, + 2, + 565, + 157, + 2, + 565, + 162, + 2, + 566, + 164, + 2, + 566, + 166, + 2, + 561, + 158, + 2, + 562, + 161, + 2, + 563, + 163, + 2, + 563, + 165, + 2, + 558, + 159, + 2, + 559, + 162, + 2, + 560, + 163, + 2, + 560, + 164, + 2 + ], + "image_id": 197388, + "bbox": [ + 540.04, + 48.81, + 99.96, + 223.36 + ], + "category_id": 1, + "id": 531914 + }, + { + "num_keypoints": 16, + "area": 14267.20475, + "iscrowd": 0, + "keypoints": [ + 580, + 211, + 2, + 586, + 206, + 2, + 574, + 204, + 2, + 0, + 0, + 0, + 562, + 198, + 2, + 584, + 220, + 2, + 529, + 215, + 2, + 599, + 242, + 2, + 512, + 260, + 2, + 619, + 274, + 2, + 538, + 285, + 2, + 537, + 288, + 2, + 506, + 277, + 2, + 562, + 332, + 2, + 452, + 332, + 2, + 550, + 387, + 1, + 402, + 371, + 2, + 582, + 184, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 387, + 389, + 2, + 0, + 0, + 0, + 374, + 383, + 2, + 0, + 0, + 0, + 390, + 365, + 2, + 559, + 197, + 2, + 559, + 202, + 2, + 559, + 205, + 2, + 560, + 209, + 2, + 561, + 213, + 2, + 564, + 217, + 2, + 567, + 220, + 2, + 570, + 223, + 2, + 573, + 225, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 573, + 201, + 2, + 575, + 202, + 2, + 577, + 203, + 2, + 579, + 204, + 2, + 580, + 206, + 2, + 584, + 207, + 2, + 585, + 206, + 2, + 587, + 205, + 2, + 589, + 205, + 2, + 590, + 205, + 2, + 582, + 207, + 2, + 582, + 209, + 2, + 581, + 212, + 2, + 581, + 215, + 2, + 577, + 214, + 2, + 578, + 214, + 2, + 580, + 216, + 2, + 581, + 216, + 2, + 582, + 216, + 2, + 573, + 204, + 2, + 576, + 204, + 2, + 578, + 205, + 2, + 580, + 207, + 2, + 578, + 207, + 2, + 575, + 206, + 2, + 584, + 208, + 2, + 586, + 207, + 2, + 588, + 206, + 2, + 590, + 207, + 2, + 588, + 208, + 2, + 586, + 209, + 2, + 571, + 217, + 2, + 574, + 217, + 2, + 576, + 217, + 2, + 577, + 217, + 2, + 577, + 217, + 2, + 578, + 217, + 2, + 579, + 218, + 2, + 578, + 219, + 2, + 577, + 219, + 2, + 576, + 220, + 2, + 575, + 219, + 2, + 573, + 218, + 2, + 572, + 217, + 2, + 576, + 217, + 2, + 576, + 218, + 2, + 577, + 218, + 2, + 579, + 218, + 2, + 577, + 219, + 2, + 576, + 219, + 2, + 575, + 219, + 2, + 622, + 274, + 2, + 620, + 281, + 2, + 620, + 287, + 2, + 623, + 292, + 2, + 627, + 297, + 2, + 628, + 284, + 2, + 635, + 290, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 628, + 281, + 2, + 631, + 285, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 628, + 278, + 2, + 632, + 283, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 628, + 277, + 2, + 631, + 279, + 2, + 633, + 282, + 2, + 0, + 0, + 0, + 542, + 286, + 2, + 551, + 285, + 2, + 557, + 289, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 557, + 293, + 2, + 559, + 301, + 2, + 559, + 306, + 2, + 558, + 312, + 2, + 551, + 293, + 2, + 552, + 302, + 2, + 552, + 307, + 2, + 0, + 0, + 0, + 546, + 296, + 2, + 548, + 302, + 2, + 549, + 307, + 2, + 0, + 0, + 0, + 543, + 298, + 2, + 544, + 303, + 2, + 545, + 307, + 2, + 0, + 0, + 0 + ], + "image_id": 197388, + "bbox": [ + 372.58, + 170.84, + 266.63, + 217.19 + ], + "category_id": 1, + "id": 533949 + }, + { + "num_keypoints": 13, + "area": 8260.75085, + "iscrowd": 0, + "keypoints": [ + 36, + 79, + 2, + 40, + 74, + 2, + 31, + 75, + 2, + 0, + 0, + 0, + 19, + 69, + 2, + 45, + 77, + 2, + 2, + 89, + 2, + 74, + 99, + 2, + 0, + 0, + 0, + 78, + 92, + 2, + 0, + 0, + 0, + 33, + 149, + 2, + 7, + 153, + 2, + 44, + 196, + 2, + 2, + 205, + 2, + 35, + 245, + 2, + 0, + 0, + 0, + 33, + 54, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 41, + 255, + 2, + 0, + 0, + 0, + 48, + 255, + 2, + 0, + 0, + 0, + 29, + 253, + 2, + 0, + 0, + 0, + 22, + 70, + 2, + 22, + 73, + 2, + 23, + 76, + 2, + 24, + 78, + 2, + 25, + 80, + 2, + 27, + 82, + 2, + 29, + 84, + 2, + 31, + 85, + 2, + 34, + 85, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 27, + 72, + 2, + 29, + 72, + 2, + 31, + 72, + 2, + 33, + 72, + 2, + 34, + 73, + 2, + 38, + 73, + 2, + 40, + 72, + 2, + 41, + 71, + 2, + 42, + 71, + 2, + 43, + 70, + 2, + 37, + 75, + 2, + 37, + 77, + 2, + 37, + 78, + 2, + 37, + 80, + 2, + 35, + 80, + 2, + 37, + 80, + 2, + 37, + 80, + 2, + 38, + 80, + 2, + 39, + 80, + 2, + 28, + 74, + 2, + 31, + 73, + 2, + 33, + 74, + 2, + 34, + 75, + 2, + 32, + 76, + 2, + 31, + 75, + 2, + 39, + 75, + 2, + 40, + 73, + 2, + 41, + 73, + 2, + 43, + 72, + 2, + 42, + 74, + 2, + 40, + 75, + 2, + 30, + 83, + 2, + 33, + 82, + 2, + 35, + 82, + 2, + 36, + 82, + 2, + 37, + 82, + 2, + 37, + 82, + 2, + 38, + 82, + 2, + 37, + 83, + 2, + 37, + 84, + 2, + 36, + 84, + 2, + 35, + 84, + 2, + 33, + 84, + 2, + 31, + 83, + 2, + 35, + 83, + 2, + 36, + 83, + 2, + 37, + 83, + 2, + 38, + 82, + 2, + 37, + 83, + 2, + 36, + 84, + 2, + 35, + 84, + 2, + 0, + 0, + 0, + 76, + 89, + 2, + 74, + 86, + 2, + 75, + 81, + 2, + 77, + 76, + 2, + 86, + 80, + 2, + 82, + 84, + 2, + 78, + 85, + 2, + 76, + 86, + 2, + 86, + 83, + 2, + 82, + 86, + 2, + 79, + 87, + 2, + 76, + 87, + 2, + 87, + 84, + 2, + 84, + 88, + 2, + 80, + 88, + 2, + 78, + 89, + 2, + 88, + 87, + 2, + 85, + 89, + 2, + 82, + 90, + 2, + 79, + 91, + 2, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ], + "image_id": 197388, + "bbox": [ + 0.5, + 43.74, + 90.1, + 220.09 + ], + "category_id": 1, + "id": 543117 + } + ] +} \ No newline at end of file diff --git a/tests/test_datasets/test_top_down_dataset.py b/tests/test_datasets/test_top_down_dataset.py index 52cfb55f5f..fac949e3f9 100644 --- a/tests/test_datasets/test_top_down_dataset.py +++ b/tests/test_datasets/test_top_down_dataset.py @@ -399,6 +399,83 @@ def test_top_down_COCO_wholebody_dataset(): _ = custom_dataset.evaluate(outputs, tmpdir, 'PCK') +def test_top_down_halpe_dataset(): + dataset = 'TopDownHalpeDataset' + dataset_info = Config.fromfile( + 'configs/_base_/datasets/halpe.py').dataset_info + # test Halpe datasets + dataset_class = DATASETS.get(dataset) + dataset_class.load_annotations = MagicMock() + dataset_class.coco = MagicMock() + + channel_cfg = dict( + num_output_channels=136, + dataset_joints=136, + dataset_channel=[ + list(range(136)), + ], + inference_channel=list(range(136))) + + data_cfg = dict( + image_size=[192, 256], + heatmap_size=[48, 64], + num_output_channels=channel_cfg['num_output_channels'], + num_joints=channel_cfg['dataset_joints'], + dataset_channel=channel_cfg['dataset_channel'], + inference_channel=channel_cfg['inference_channel'], + soft_nms=False, + nms_thr=1.0, + oks_thr=0.9, + vis_thr=0.2, + use_gt_bbox=True, + det_bbox_thr=0.0, + bbox_file='tests/data/coco/test_coco_det_AP_H_56.json', + ) + # Test det bbox + data_cfg_copy = copy.deepcopy(data_cfg) + data_cfg_copy['use_gt_bbox'] = False + _ = dataset_class( + ann_file='tests/data/halpe/test_halpe.json', + img_prefix='tests/data/coco/', + data_cfg=data_cfg_copy, + pipeline=[], + dataset_info=dataset_info, + test_mode=True) + + _ = dataset_class( + ann_file='tests/data/halpe/test_halpe.json', + img_prefix='tests/data/coco/', + data_cfg=data_cfg_copy, + pipeline=[], + dataset_info=dataset_info, + test_mode=False) + + # Test gt bbox + custom_dataset = dataset_class( + ann_file='tests/data/halpe/test_halpe.json', + img_prefix='tests/data/coco/', + data_cfg=data_cfg, + pipeline=[], + dataset_info=dataset_info, + test_mode=True) + + assert custom_dataset.test_mode is True + assert custom_dataset.dataset_name == 'halpe' + + image_id = 785 + assert image_id in custom_dataset.img_ids + assert len(custom_dataset.img_ids) == 4 + _ = custom_dataset[0] + + outputs = convert_db_to_output(custom_dataset.db) + with tempfile.TemporaryDirectory() as tmpdir: + infos = custom_dataset.evaluate(outputs, tmpdir, 'mAP') + assert_almost_equal(infos['AP'], 1.0) + + with pytest.raises(KeyError): + _ = custom_dataset.evaluate(outputs, tmpdir, 'PCK') + + def test_top_down_OCHuman_dataset(): dataset = 'TopDownOCHumanDataset' dataset_info = Config.fromfile(