-
Notifications
You must be signed in to change notification settings - Fork 0
/
multiclass_task.py
185 lines (174 loc) · 7.36 KB
/
multiclass_task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import numpy as np
from sklearn.metrics import f1_score
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from collections import defaultdict
from sklearn.metrics import accuracy_score
dataset = ''
train_dir = './data/' + dataset + '/graph.embeddings'
test_dir_1 = './data/' + dataset + '/result_1.csv'
test_dir_3 = './data/' + dataset + '/result_3.csv'
test_dir_5 = './data/' + dataset + '/result_5.csv'
def read_node_class():
nodes_list = list()
node_class_dict = dict()
test_nodes_list = list()
class_num_dict = dict()
with open('./data/' + dataset + '/test.csv', "r") as f:
lines = f.readlines()
for line in lines:
temp = list(line.strip('\n').split(' '))
test_nodes_list.append(temp[0])
with open('./data/' + dataset + '/node_class.txt', "r") as f:
lines = f.readlines()
for line in lines:
temp = list(line.strip('\n').split(' '))
if temp[1] not in class_num_dict.keys():
class_num_dict[temp[1]] = 1
else:
class_num_dict[temp[1]] += 1
nodes_list.append(temp[0])
node_class_dict[temp[0]] = temp[1]
nodes4train_list = list()
for n in nodes_list:
if n not in test_nodes_list:
nodes4train_list.append(n)
return nodes4train_list, test_nodes_list, node_class_dict, class_num_dict
def read_embeddings(train_dir, test_dir_1, test_dir_3, test_dir_5):
train_emb_dict = dict()
with open(train_dir, "r") as f:
lines = f.readlines()
for line in lines:
temp = list(line.strip('\n').split(' '))
if len(temp) == 2:
continue
else:
train_emb_dict[temp[0]] = temp[1:]
test_emb_1_dict = dict()
with open(test_dir_1, "r") as f:
lines = f.readlines()
for line in lines:
temp = list(line.strip('\n').split(' '))
test_emb_1_dict[temp[0]] = temp[1:]
test_emb_3_dict = dict()
with open(test_dir_3, "r") as f:
lines = f.readlines()
for line in lines:
temp = list(line.strip('\n').split(' '))
test_emb_3_dict[temp[0]] = temp[1:]
test_emb_5_dict = dict()
with open(test_dir_5, "r") as f:
lines = f.readlines()
for line in lines:
temp = list(line.strip('\n').split(' '))
test_emb_5_dict[temp[0]] = temp[1:]
return train_emb_dict, test_emb_1_dict, test_emb_3_dict, test_emb_5_dict
if __name__ == '__main__':
nodes4train, test_nodes, node_class, class_num = read_node_class()
max_class = max(class_num, key = class_num.get)
microf_labels = list(class_num.keys())
microf_labels.remove(str(max_class))
microf_labels = [int(x) for x in microf_labels]
train_emb, test_emb_1, test_emb_3, test_emb_5 = read_embeddings(train_dir, test_dir_1, test_dir_3, test_dir_5)
all_results = defaultdict(list)
all_results_1 = defaultdict(list)
all_results_3 = defaultdict(list)
all_results_5 = defaultdict(list)
num_splits = 10
for s in range(num_splits):
train_nodes, _, _, _ = train_test_split(nodes4train, range(len(nodes4train)), train_size=100,
random_state=19 + s * 7)
X_train_, y_train_ = [], []
for n in train_nodes:
X_train_.append(train_emb[n])
y_train_.append(node_class[n])
X_test_, X_test_1, X_test_3, X_test_5, y_test_, y_test__ = [], [], [], [], [], []
for n in test_nodes:
X_test_.append(train_emb[n])
X_test_1.append(test_emb_1[n])
X_test_3.append(test_emb_3[n])
X_test_5.append(test_emb_5[n])
y_test_.append(node_class[n])
X_train = np.asarray(X_train_).astype(float)
y_train = np.asarray(y_train_).astype(float)
X_test = np.asarray(X_test_).astype(float)
X_test1 = np.asarray(X_test_1).astype(float)
X_test3 = np.asarray(X_test_3).astype(float)
X_test5 = np.asarray(X_test_5).astype(float)
y_test = np.asarray(y_test_).astype(float)
clf = LogisticRegression(multi_class='auto', solver='liblinear')
clf.fit(X_train, y_train)
preds = clf.predict(X_test)
preds1 = clf.predict(X_test1)
preds3 = clf.predict(X_test3)
preds5 = clf.predict(X_test5)
results = {}
averages = ["micro", "macro"]
for average in averages:
if average == "micro":
results[average] = f1_score(y_test, preds, average=average, labels=np.asarray(microf_labels))
else:
results[average] = f1_score(y_test, preds, average=average)
results["accuracy"] = accuracy_score(y_test, preds)
all_results[s].append(results)
results1 = {}
averages = ["micro", "macro"]
for average in averages:
if average == "micro":
results1[average] = f1_score(y_test, preds1, average=average, labels=np.asarray(microf_labels))
else:
results1[average] = f1_score(y_test, preds1, average=average)
results1["accuracy"] = accuracy_score(y_test, preds1)
all_results_1[s].append(results1)
results3 = {}
averages = ["micro", "macro"]
for average in averages:
if average == "micro":
results3[average] = f1_score(y_test, preds3, average=average, labels=np.asarray(microf_labels))
else:
results3[average] = f1_score(y_test, preds3, average=average)
results3["accuracy"] = accuracy_score(y_test, preds3)
all_results_3[s].append(results3)
results5 = {}
averages = ["micro", "macro"]
for average in averages:
if average == "micro":
results5[average] = f1_score(y_test, preds5, average=average, labels=np.asarray(microf_labels))
else:
results5[average] = f1_score(y_test, preds5, average=average)
results5["accuracy"] = accuracy_score(y_test, preds5)
all_results_5[s].append(results5)
print('---------------Results------------------')
avg_score = defaultdict(float)
for s in all_results.keys():
for score_dict in all_results[s]:
for metric, score in score_dict.items():
avg_score[metric] += score
for metric in avg_score:
avg_score[metric] /= len(all_results)
print(dict(avg_score))
avg_score = defaultdict(float)
for s in all_results_1.keys():
for score_dict in all_results_1[s]:
for metric, score in score_dict.items():
avg_score[metric] += score
for metric in avg_score:
avg_score[metric] /= len(all_results_1)
print(dict(avg_score))
avg_score = defaultdict(float)
for s in all_results_3.keys():
for score_dict in all_results_3[s]:
for metric, score in score_dict.items():
avg_score[metric] += score
for metric in avg_score:
avg_score[metric] /= len(all_results_3)
print(dict(avg_score))
avg_score = defaultdict(float)
for s in all_results_5.keys():
for score_dict in all_results_5[s]:
for metric, score in score_dict.items():
avg_score[metric] += score
for metric in avg_score:
avg_score[metric] /= len(all_results_5)
print(dict(avg_score))
print('-------------------')