-
Notifications
You must be signed in to change notification settings - Fork 0
/
bert.py
259 lines (208 loc) · 10.7 KB
/
bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
from typing import Dict, List, Optional, Union, Tuple, Callable
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from base_bert import BertPreTrainedModel
from utils import *
class BertSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
# initialize the linear transformation layers for key, value, query
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
# this dropout is applied to normalized attention scores following the original implementation of transformer
# although it is a bit unusual, we empirically observe that it yields better performance
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transform(self, x, linear_layer):
# the corresponding linear_layer of k, v, q are used to project the hidden_state (x)
bs, seq_len = x.shape[:2]
proj = linear_layer(x)
# next, we need to produce multiple heads for the proj
# this is done by spliting the hidden state to self.num_attention_heads, each of size self.attention_head_size
proj = proj.view(bs, seq_len, self.num_attention_heads, self.attention_head_size)
# by proper transpose, we have proj of [bs, num_attention_heads, seq_len, attention_head_size]
proj = proj.transpose(1, 2)
return proj
def attention(self, key, query, value, attention_mask):
# each attention is calculated following eq (1) of https://arxiv.org/pdf/1706.03762.pdf
# attention scores are calculated by multiply query and key
# and get back a score matrix S of [bs, num_attention_heads, seq_len, seq_len]
# S[*, i, j, k] represents the (unnormalized) attention score between the j-th and k-th token, given by i-th attention head
# before normalizing the scores, use the attention mask to mask out the padding token scores
# Note again: in the attention_mask non-padding tokens with 0 and padding tokens with a large negative number
# normalize the scores
# multiply the attention scores to the value and get back V'
# next, we need to concat multi-heads and recover the original shape [bs, seq_len, num_attention_heads * attention_head_size = hidden_size]
# shape = [bs, num_attention_heads, seq_len, seq_len]
attn_scores = query @ key.transpose(-2, -1)
masked_scores = attn_scores + attention_mask
normalized_scores = F.softmax(masked_scores * (1 / math.sqrt(self.attention_head_size)), dim=3)
normalized_scores = self.dropout(normalized_scores)
# shape = [bs, num_heads, seq_len, head_size]
attn_values = normalized_scores @ value
bs = attn_scores.size()[0]
seq_len = attn_scores.size()[2]
hidden_size = self.num_attention_heads * self.attention_head_size
# concatenate all heads side by side: shape = [bs, seq_len, num_heads * head_size]
attn_output = attn_values.transpose(1, 2).contiguous().reshape(bs, seq_len, hidden_size)
return attn_output
# sm = nn.Softmax(dim=3)
# bs, _, seq_len = key.shape[:3]
# key = key.transpose(2, 3)
# S = query@key
# S /= self.attention_head_size**0.5 #[bs, self.num_attention_heads, seq_len, seq_len)
# S += attention_mask
# S = sm(S)
# S = self.dropout(S)
# V = S@value #[bs, self.num_attention_heads, seq_len, self.attention_head_size)
# V = V.transpose(1,2).contiguous()
# output = V.view(bs,seq_len,self.all_head_size) #[bs, seq_len, self.num_attention_heads*self.attention_head_size=hidden)
# return output
def forward(self, hidden_states, attention_mask):
"""
hidden_states: [bs, seq_len, hidden_state]
attention_mask: [bs, 1, 1, seq_len]
output: [bs, seq_len, hidden_state]
"""
# first, we have to generate the key, value, query for each token for multi-head attention w/ transform (more details inside the function)
# of *_layers are of [bs, num_attention_heads, seq_len, attention_head_size]
key_layer = self.transform(hidden_states, self.key)
value_layer = self.transform(hidden_states, self.value)
query_layer = self.transform(hidden_states, self.query)
# calculate the multi-head attention
attn_value = self.attention(key_layer, query_layer, value_layer, attention_mask)
return attn_value
class BertLayer(nn.Module):
def __init__(self, config):
super().__init__()
# multi-head attention
self.self_attention = BertSelfAttention(config)
# add-norm
self.attention_dense = nn.Linear(config.hidden_size, config.hidden_size)
self.attention_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.attention_dropout = nn.Dropout(config.hidden_dropout_prob)
# feed forward
self.interm_dense = nn.Linear(config.hidden_size, config.intermediate_size)
self.interm_af = F.gelu
# another add-norm
self.out_dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.out_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.out_dropout = nn.Dropout(config.hidden_dropout_prob)
def add_norm(self, input, output, dense_layer, dropout, ln_layer):
"""
this function is applied after the multi-head attention layer or the feed forward layer
input: the input of the previous layer
output: the output of the previous layer
dense_layer: used to transform the output
dropout: the dropout to be applied
ln_layer: the layer norm to be applied
"""
# Hint: Remember that BERT applies to the output of each sub-layer, before it is added to the sub-layer input and normalized
### TODO
output = dense_layer(output)
output = dropout(output)
return ln_layer(input+output)
#raise NotImplementedError
def forward(self, hidden_states, attention_mask):
"""
hidden_states: either from the embedding layer (first bert layer) or from the previous bert layer
as shown in the left of Figure 1 of https://arxiv.org/pdf/1706.03762.pdf
each block consists of
1. a multi-head attention layer (BertSelfAttention)
2. a add-norm that takes the input and output of the multi-head attention layer
3. a feed forward layer
4. a add-norm that takes the input and output of the feed forward layer
"""
output1 = self.self_attention(hidden_states,attention_mask)
# add-norm layer
output2 = self.add_norm(hidden_states, output1, self.attention_dense, self.attention_dropout, self.attention_layer_norm)
# feed forward
output3 = self.interm_dense(output2)
output3 = self.interm_af(output3)
# another add-norm layer
ff_layer = self.add_norm(output2, output3, self.out_dense, self.out_dropout, self.out_layer_norm)
return ff_layer
class BertModel(BertPreTrainedModel):
"""
the bert model returns the final embeddings for each token in a sentence
it consists
1. embedding (used in self.embed)
2. a stack of n bert layers (used in self.encode)
3. a linear transformation layer for [CLS] token (used in self.forward, as given)
"""
def __init__(self, config):
super().__init__(config)
self.config = config
# embedding
self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.pos_embedding = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.tk_type_embedding = nn.Embedding(config.type_vocab_size, config.hidden_size)
self.embed_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.embed_dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is a constant, register to buffer
position_ids = torch.arange(config.max_position_embeddings).unsqueeze(0)
self.register_buffer('position_ids', position_ids)
# bert encoder
self.bert_layers = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
# for [CLS] token
self.pooler_dense = nn.Linear(config.hidden_size, config.hidden_size)
self.pooler_af = nn.Tanh()
self.init_weights()
def embed(self, input_ids):
input_shape = input_ids.size()
seq_length = input_shape[1]
# Get word embedding from self.word_embedding into input_embeds.
#inputs_embeds = None
### TODO
inputs_embeds = self.word_embedding(input_ids)
#raise NotImplementedError
# Get position index and position embedding from self.pos_embedding into pos_embeds.
pos_ids = self.position_ids[:, :seq_length]
pos_embeds = self.pos_embedding(pos_ids)
#pos_embeds = None
### TODO
#raise NotImplementedError
# Get token type ids, since we are not consider token type, just a placeholder.
tk_type_ids = torch.zeros(input_shape, dtype=torch.long, device=input_ids.device)
tk_type_embeds = self.tk_type_embedding(tk_type_ids)
# Add three embeddings together; then apply embed_layer_norm and dropout and return.
### TODO
#raise NotImplementedError
embeds = inputs_embeds + tk_type_embeds + pos_embeds
# layer norm and dropout
embeds = self.embed_layer_norm(embeds)
embeds = self.embed_dropout(embeds)
return embeds
def encode(self, hidden_states, attention_mask):
"""
hidden_states: the output from the embedding layer [batch_size, seq_len, hidden_size]
attention_mask: [batch_size, seq_len]
"""
# get the extended attention mask for self attention
# returns extended_attention_mask of [batch_size, 1, 1, seq_len]
# non-padding tokens with 0 and padding tokens with a large negative number
extended_attention_mask: torch.Tensor = get_extended_attention_mask(attention_mask, self.dtype)
# pass the hidden states through the encoder layers
for i, layer_module in enumerate(self.bert_layers):
# feed the encoding from the last bert_layer to the next
hidden_states = layer_module(hidden_states, extended_attention_mask)
return hidden_states
def forward(self, input_ids, attention_mask):
"""
input_ids: [batch_size, seq_len], seq_len is the max length of the batch
attention_mask: same size as input_ids, 1 represents non-padding tokens, 0 represents padding tokens
"""
# get the embedding for each input token
embedding_output = self.embed(input_ids=input_ids)
# feed to a transformer (a stack of BertLayers)
sequence_output = self.encode(embedding_output, attention_mask=attention_mask)
# get cls token hidden state
first_tk = sequence_output[:, 0]
first_tk = self.pooler_dense(first_tk)
first_tk = self.pooler_af(first_tk)
return {'last_hidden_state': sequence_output, 'pooler_output': first_tk}