forked from rmgarnett/fast_wl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwl_transformation.m
65 lines (57 loc) · 2.1 KB
/
wl_transformation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
% WL_TRANSFORMATION computes the 1d WL transformation on a labeled graph.
%
% This is an implementation of the one-dimensional Weisfeiler--Lehman
% (WL) transformation on a labeled graph G using a fast perfect hash;
% for more details, see
%
% Kersting, K., Mladenov, M., Garnett, R., and Grohe, M. Power
% Iterated Color Refinement. (2014). AAAI Conference on Artificial
% Intelligence (AAAI 2014).
%
% Consider a node x in G, and let l(x) and N(x) represent the label of
% x and neighborhood of x, respectively. Let p(i) represent the ith
% prime. The hash for x is given by
%
% h(x) = l(x) + \sum_{y \in N(x)} log(p(l(y)))
%
% It can be easily shown that, given two nodes (x, y) in V(G),
% h(x) = h(y) if and only if:
%
% - l(x) = l(y)
% - N(x) and N(y) contain the same labels with the same cardinality,
%
% that is, h(x) gives unique values to unique WL signatures. The use
% of h(x) is much faster than the typical string hashes used for
% completing the WL transformation.
%
% Usage:
%
% new_labels = wl_transformation(A, labels)
%
% Inputs:
%
% A: an unweighted adjacency matrix for G. If possible, A
% should be a sparse matrix; e.g., sparse(A > 0).
% labels: a vector of integer node labels
%
% Outputs:
%
% new_labels: a vector containing the new compressed labels after
% one step of the 1d WL transformation
%
% See also WL_KERNEL.
% Copyright (c) 2013--2017 Roman Garnett.
function new_labels = wl_transformation(A, labels)
% the ith entry is equal to the 2^(i-1)'th prime
primes_arguments_required = [2, 3, 7, 19, 53, 131, 311, 719, 1619, ...
3671, 8161, 17863, 38873, 84017, 180503, 386093, ...
821641, 1742537, 3681131, 7754077, 16290047];
num_labels = max(labels);
% generate enough primes to have one for each label in the graph
primes_argument = primes_arguments_required(ceil(log2(num_labels)) + 1);
p = primes(primes_argument);
log_primes = log(p(1:num_labels))';
signatures = labels + A * log_primes(labels);
% map signatures to integers counting from 1
[~, ~, new_labels] = uniquetol(signatures);
end