diff --git a/README.md b/README.md
index 6ee238fae..dc69a591d 100644
--- a/README.md
+++ b/README.md
@@ -1,11 +1,20 @@
 # *Faster* R-CNN Fork
 
+ - This fork adds support to python 3.4
+ - Uses an up-to-date Caffe Version
+
+
 #### Warning
 This Fork is still a work in progress 
 
-This fork :
  - Merged the [caffe-fast-rcnn](https://github.com/rbgirshick/caffe-fast-rcnn/tree/0dcd397b29507b8314e252e850518c5695efbb83) fork to the current Caffe version. The [PR](https://github.com/BVLC/caffe/pull/4163) is waiting to be Merged
  - Add support to Python 3.4
+ - Not tested with Python 2.7
+
+##### To-Do
+ 
+ - Detect GPU arch in setup.py
+ - Test with python2.7
 
 ### Disclaimer
 
@@ -97,9 +106,31 @@ If you find Faster R-CNN useful in your research, please consider citing:
     **Note 2:** The `caffe` submodule needs to be on the `fast-rcnn` branch (or equivalent detached state). This will happen automatically *if you followed step 1 instructions*.
 
 3. Build the Cython modules
+
+    Install pip packages
+    ```sh
+    pip install -r requirements.txt
+
+    ```
+    
+    You have to check GPU arch default is sm_35
+
     ```Shell
     cd $FRCN_ROOT/lib
-    make
+
+    # For python 2
+    make python2
+
+    # For python 3
+    make python3
+    ```
+
+    If you want to rebuild :
+    ```sh
+    make clean
+
+    # Then
+    make python2/python3
     ```
 
 4. Build Caffe and pycaffe
diff --git a/caffe b/caffe
index c5f996b29..ad63d75ff 160000
--- a/caffe
+++ b/caffe
@@ -1 +1 @@
-Subproject commit c5f996b290bfe45a78fd662cfa24a61e89f58fd3
+Subproject commit ad63d75ff859fa9f2ad5537e52b07358674c49b0
diff --git a/lib/Makefile b/lib/Makefile
index a48239850..d598072ad 100644
--- a/lib/Makefile
+++ b/lib/Makefile
@@ -1,3 +1,12 @@
-all:
+python3:
+	python3 setup.py build_ext --inplace
+	rm -rf build
+
+python2:
 	python setup.py build_ext --inplace
 	rm -rf build
+
+clean:
+	rm utils/bbox.c
+	rm nms/cpu_nms.c
+	rm nms/gpu_nms.cpp
\ No newline at end of file
diff --git a/lib/datasets/coco.py b/lib/datasets/coco.py
index 0815c696b..fdfb613f6 100644
--- a/lib/datasets/coco.py
+++ b/lib/datasets/coco.py
@@ -13,7 +13,8 @@
 import numpy as np
 import scipy.sparse
 import scipy.io as sio
-import cPickle
+import six.moves.cPickle as pickle
+from six.moves import range
 import json
 import uuid
 # COCO API
@@ -36,7 +37,7 @@ def _filter_crowd_proposals(roidb, crowd_thresh):
         if len(crowd_inds) == 0 or len(non_gt_inds) == 0:
             continue
 
-        iscrowd = [int(True) for _ in xrange(len(crowd_inds))]
+        iscrowd = [int(True) for _ in range(len(crowd_inds))]
         crowd_boxes = ds_utils.xyxy_to_xywh(entry['boxes'][crowd_inds, :])
         non_gt_boxes = ds_utils.xyxy_to_xywh(entry['boxes'][non_gt_inds, :])
         ious = COCOmask.iou(non_gt_boxes, crowd_boxes, iscrowd)
@@ -65,7 +66,7 @@ def __init__(self, image_set, year):
         self._COCO = COCO(self._get_ann_file())
         cats = self._COCO.loadCats(self._COCO.getCatIds())
         self._classes = tuple(['__background__'] + [c['name'] for c in cats])
-        self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
+        self._class_to_ind = dict(zip(self.classes, range(self.num_classes)))
         self._class_to_coco_cat_id = dict(zip([c['name'] for c in cats],
                                               self._COCO.getCatIds()))
         self._image_index = self._load_image_set_index()
@@ -126,10 +127,8 @@ def image_path_from_index(self, index):
                      str(index).zfill(12) + '.jpg')
         image_path = osp.join(self._data_path, 'images',
                               self._data_name, file_name)
-        assert(
-            osp.exists(image_path),
-            'Path does not exist: {}'.format(image_path)
-        )
+
+        assert osp.exists(image_path), 'Path does not exist: {}'.format(image_path)
 
         return image_path
 
@@ -153,7 +152,7 @@ def _roidb_from_proposals(self, method):
 
         if osp.exists(cache_file):
             with open(cache_file, 'rb') as fid:
-                roidb = cPickle.load(fid)
+                roidb = pickle.load(fid)
 
             print('{:s} {:s} roidb loaded from {:s}'.format(
                     self.name,
@@ -174,7 +173,7 @@ def _roidb_from_proposals(self, method):
         else:
             roidb = self._load_proposals(method, None)
         with open(cache_file, 'wb') as fid:
-            cPickle.dump(roidb, fid, cPickle.HIGHEST_PROTOCOL)
+            pickle.dump(roidb, fid, pickle.HIGHEST_PROTOCOL)
 
         print('wrote {:s} roidb to {:s}'.format(method, cache_file))
 
@@ -196,8 +195,10 @@ def _load_proposals(self, method, gt_roidb):
             'MCG',
             'selective_search',
             'edge_boxes_AR',
-            'edge_boxes_70']
-        assert(method in valid_methods)
+            'edge_boxes_70'
+        ]
+
+        assert method in valid_methods
 
         print('Loading {} boxes'.format(method))
 
@@ -239,7 +240,7 @@ def gt_roidb(self):
         cache_file = osp.join(self.cache_path, self.name + '_gt_roidb.pkl')
         if osp.exists(cache_file):
             with open(cache_file, 'rb') as fid:
-                roidb = cPickle.load(fid)
+                roidb = pickle.load(fid)
 
             print('{} gt roidb loaded from {}'.format(self.name, cache_file))
 
@@ -249,7 +250,7 @@ def gt_roidb(self):
                     for index in self._image_index]
 
         with open(cache_file, 'wb') as fid:
-            cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
+            pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL)
 
         print('wrote gt roidb to {}'.format(cache_file))
 
@@ -329,7 +330,7 @@ def _get_thr_ind(coco_eval, thr):
             ind = np.where((coco_eval.params.iouThrs > thr - 1e-5) &
                            (coco_eval.params.iouThrs < thr + 1e-5))[0][0]
             iou_thr = coco_eval.params.iouThrs[ind]
-            assert(np.isclose(iou_thr, thr))
+            assert np.isclose(iou_thr, thr)
 
             return ind
 
@@ -373,7 +374,7 @@ def _do_detection_eval(self, res_file, output_dir):
         eval_file = osp.join(output_dir, 'detection_results.pkl')
 
         with open(eval_file, 'wb') as fid:
-            cPickle.dump(coco_eval, fid, cPickle.HIGHEST_PROTOCOL)
+            pickle.dump(coco_eval, fid, pickle.HIGHEST_PROTOCOL)
 
         print('Wrote COCO eval results to: {}'.format(eval_file))
 
@@ -392,7 +393,7 @@ def _coco_results_one_category(self, boxes, cat_id):
               [{'image_id': index,
                 'category_id': cat_id,
                 'bbox': [xs[k], ys[k], ws[k], hs[k]],
-                'score': scores[k]} for k in xrange(dets.shape[0])])
+                'score': scores[k]} for k in range(dets.shape[0])])
 
         return results
 
diff --git a/lib/datasets/imdb.py b/lib/datasets/imdb.py
index 0f3acae41..b0b5b3df7 100644
--- a/lib/datasets/imdb.py
+++ b/lib/datasets/imdb.py
@@ -11,6 +11,7 @@
 import numpy as np
 import scipy.sparse
 from fast_rcnn.config import cfg
+from six.moves import range
 
 
 class imdb(object):
@@ -98,21 +99,21 @@ def evaluate_detections(self, all_boxes, output_dir=None):
     def _get_widths(self):
         return [
             PIL.Image.open(self.image_path_at(i)).size[0]
-            for i in xrange(self.num_images)
+            for i in range(self.num_images)
         ]
 
     def append_flipped_images(self):
         num_images = self.num_images
         widths = self._get_widths()
 
-        for i in xrange(num_images):
+        for i in range(num_images):
             boxes = self.roidb[i]['boxes'].copy()
             oldx1 = boxes[:, 0].copy()
             oldx2 = boxes[:, 2].copy()
             boxes[:, 0] = widths[i] - oldx2 - 1
             boxes[:, 2] = widths[i] - oldx1 - 1
 
-            assert((boxes[:, 2] >= boxes[:, 0]).all())
+            assert (boxes[:, 2] >= boxes[:, 0]).all()
 
             entry = {'boxes': boxes,
                      'gt_overlaps': self.roidb[i]['gt_overlaps'],
@@ -152,13 +153,13 @@ def evaluate_recall(self, candidate_boxes=None, thresholds=None,
             [512**2, 1e5**2]   # 512-inf
         ]
 
-        assert(area in areas, 'unknown area range: {}'.format(area))
+        assert area in areas, 'unknown area range: {}'.format(area)
 
         area_range = area_ranges[areas[area]]
         gt_overlaps = np.zeros(0)
         num_pos = 0
 
-        for i in xrange(self.num_images):
+        for i in range(self.num_images):
             # Checking for max_overlaps == 1 avoids including crowd annotations
             # (...pretty hacking :/)
             max_gt_overlaps = self.roidb[i]['gt_overlaps'].toarray().max(axis=1)
@@ -189,7 +190,7 @@ def evaluate_recall(self, candidate_boxes=None, thresholds=None,
                                      gt_boxes.astype(np.float))
 
             _gt_overlaps = np.zeros((gt_boxes.shape[0]))
-            for j in xrange(gt_boxes.shape[0]):
+            for j in range(gt_boxes.shape[0]):
                 # find which proposal box maximally covers each gt box
                 argmax_overlaps = overlaps.argmax(axis=0)
                 # and get the iou amount of coverage for each gt box
@@ -223,13 +224,11 @@ def evaluate_recall(self, candidate_boxes=None, thresholds=None,
                 'gt_overlaps': gt_overlaps}
 
     def create_roidb_from_box_list(self, box_list, gt_roidb):
-        assert(
-            len(box_list) == self.num_images,
-            'Number of boxes must match number of ground-truth images'
-        )
+
+        assert len(box_list) == self.num_images, 'Number of boxes must match number of ground-truth images'
 
         roidb = []
-        for i in xrange(self.num_images):
+        for i in range(self.num_images):
             boxes = box_list[i]
             num_boxes = boxes.shape[0]
             overlaps = np.zeros((num_boxes, self.num_classes), dtype=np.float32)
@@ -257,7 +256,7 @@ def create_roidb_from_box_list(self, box_list, gt_roidb):
     @staticmethod
     def merge_roidbs(a, b):
         assert len(a) == len(b)
-        for i in xrange(len(a)):
+        for i in range(len(a)):
             a[i]['boxes'] = np.vstack((a[i]['boxes'], b[i]['boxes']))
             a[i]['gt_classes'] = np.hstack((a[i]['gt_classes'],
                                             b[i]['gt_classes']))
diff --git a/lib/datasets/pascal_voc.py b/lib/datasets/pascal_voc.py
index bfd7faa7c..f49aad0c5 100644
--- a/lib/datasets/pascal_voc.py
+++ b/lib/datasets/pascal_voc.py
@@ -12,11 +12,12 @@
 import scipy.sparse
 import scipy.io as sio
 import utils.cython_bbox
-import cPickle
+import six.moves.cPickle as pickle
 import subprocess
 import uuid
 from voc_eval import voc_eval
 from fast_rcnn.config import cfg
+from six.moves import range
 
 
 class pascal_voc(imdb):
@@ -37,7 +38,7 @@ def __init__(self, image_set, year, devkit_path=None):
                          'cow', 'diningtable', 'dog', 'horse',
                          'motorbike', 'person', 'pottedplant',
                          'sheep', 'sofa', 'train', 'tvmonitor')
-        self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
+        self._class_to_ind = dict(zip(self.classes, range(self.num_classes)))
         self._image_ext = '.jpg'
         self._image_index = self._load_image_set_index()
         # Default to roidb handler
@@ -53,15 +54,9 @@ def __init__(self, image_set, year, devkit_path=None):
                        'rpn_file': None,
                        'min_size': 2}
 
-        assert(
-            os.path.exists(self._devkit_path),
-            'VOCdevkit path does not exist: {}'.format(self._devkit_path)
-        )
+        assert os.path.exists(self._devkit_path), 'VOCdevkit path does not exist: {}'.format(self._devkit_path)
 
-        assert(
-            os.path.exists(self._data_path),
-            'Path does not exist: {}'.format(self._data_path)
-        )
+        assert os.path.exists(self._data_path), 'Path does not exist: {}'.format(self._data_path)
 
     def image_path_at(self, i):
         """
@@ -75,10 +70,7 @@ def image_path_from_index(self, index):
         """
         image_path = os.path.join(self._data_path, 'JPEGImages',
                                   index + self._image_ext)
-        assert(
-            os.path.exists(image_path),
-            'Path does not exist: {}'.format(image_path)
-        )
+        assert os.path.exists(image_path), 'Path does not exist: {}'.format(image_path)
 
         return image_path
 
@@ -90,10 +82,8 @@ def _load_image_set_index(self):
         # self._devkit_path + /VOCdevkit2007/VOC2007/ImageSets/Main/val.txt
         image_set_file = os.path.join(self._data_path, 'ImageSets', 'Main',
                                       self._image_set + '.txt')
-        assert(
-            os.path.exists(image_set_file),
-            'Path does not exist: {}'.format(image_set_file)
-        )
+
+        assert os.path.exists(image_set_file), 'Path does not exist: {}'.format(image_set_file)
 
         with open(image_set_file) as f:
             image_index = [x.strip() for x in f.readlines()]
@@ -115,7 +105,7 @@ def gt_roidb(self):
         cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl')
         if os.path.exists(cache_file):
             with open(cache_file, 'rb') as fid:
-                roidb = cPickle.load(fid)
+                roidb = pickle.load(fid)
 
             print('{} gt roidb loaded from {}'.format(self.name, cache_file))
 
@@ -124,7 +114,7 @@ def gt_roidb(self):
         gt_roidb = [self._load_pascal_annotation(index)
                     for index in self.image_index]
         with open(cache_file, 'wb') as fid:
-            cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
+            pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL)
 
         print('wrote gt roidb to {}'.format(cache_file))
 
@@ -144,7 +134,7 @@ def selective_search_roidb(self):
 
         if os.path.exists(cache_file):
             with open(cache_file, 'rb') as fid:
-                roidb = cPickle.load(fid)
+                roidb = pickle.load(fid)
 
             print('{} ss roidb loaded from {}'.format(self.name, cache_file))
 
@@ -158,7 +148,7 @@ def selective_search_roidb(self):
             roidb = self._load_selective_search_roidb(None)
 
         with open(cache_file, 'wb') as fid:
-            cPickle.dump(roidb, fid, cPickle.HIGHEST_PROTOCOL)
+            pickle.dump(roidb, fid, pickle.HIGHEST_PROTOCOL)
 
         print('wrote ss roidb to {}'.format(cache_file))
 
@@ -178,13 +168,10 @@ def _load_rpn_roidb(self, gt_roidb):
         filename = self.config['rpn_file']
 
         print('loading {}'.format(filename))
-        assert(
-            os.path.exists(filename),
-            'rpn data not found at: {}'.format(filename)
-        )
+        assert os.path.exists(filename), 'rpn data not found at: {}'.format(filename)
 
         with open(filename, 'rb') as f:
-            box_list = cPickle.load(f)
+            box_list = pickle.load(f)
 
         return self.create_roidb_from_box_list(box_list, gt_roidb)
 
@@ -192,15 +179,13 @@ def _load_selective_search_roidb(self, gt_roidb):
         filename = os.path.abspath(os.path.join(cfg.DATA_DIR,
                                                 'selective_search_data',
                                                 self.name + '.mat'))
-        assert(
-            os.path.exists(filename),
-            'Selective search data not found at: {}'.format(filename)
-        )
+        
+        assert os.path.exists(filename), 'Selective search data not found at: {}'.format(filename)
 
         raw_data = sio.loadmat(filename)['boxes'].ravel()
 
         box_list = []
-        for i in xrange(raw_data.shape[0]):
+        for i in range(raw_data.shape[0]):
             boxes = raw_data[i][:, (1, 0, 3, 2)] - 1
             keep = ds_utils.unique_boxes(boxes)
             boxes = boxes[keep, :]
@@ -297,7 +282,7 @@ def _write_voc_results_file(self, all_boxes):
                         continue
 
                     # the VOCdevkit expects 1-based indices
-                    for k in xrange(dets.shape[0]):
+                    for k in range(dets.shape[0]):
                         f.write('{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'.
                                 format(index, dets[k, -1],
                                        dets[k, 0] + 1, dets[k, 1] + 1,
@@ -339,7 +324,7 @@ def _do_python_eval(self, output_dir='output'):
             print('AP for {} = {:.4f}'.format(cls, ap))
 
             with open(os.path.join(output_dir, cls + '_pr.pkl'), 'w') as f:
-                cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f)
+                pickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f)
 
         print('Mean AP = {:.4f}'.format(np.mean(aps)))
         print('~~~~~~~~')
diff --git a/lib/datasets/voc_eval.py b/lib/datasets/voc_eval.py
index 2c9c230b4..9dc0e3c00 100644
--- a/lib/datasets/voc_eval.py
+++ b/lib/datasets/voc_eval.py
@@ -6,7 +6,7 @@
 
 import xml.etree.ElementTree as ET
 import os
-import cPickle
+import six.moves.cPickle as pickle
 import numpy as np
 
 
@@ -117,11 +117,11 @@ def voc_eval(detpath,
         # save
         print 'Saving cached annotations to {:s}'.format(cachefile)
         with open(cachefile, 'w') as f:
-            cPickle.dump(recs, f)
+            pickle.dump(recs, f)
     else:
         # load
         with open(cachefile, 'r') as f:
-            recs = cPickle.load(f)
+            recs = pickle.load(f)
 
     # extract gt objects for this class
     class_recs = {}
diff --git a/lib/fast_rcnn/config.py b/lib/fast_rcnn/config.py
index 4ac1ba45e..fc2a7af49 100644
--- a/lib/fast_rcnn/config.py
+++ b/lib/fast_rcnn/config.py
@@ -234,7 +234,7 @@ def _merge_a_into_b(a, b):
     if type(a) is not edict:
         return
 
-    for k, v in a.iteritems():
+    for k, v in a.items():
         # a must specify keys that are in b
         if k not in b:
             raise KeyError('{} is not a valid config key'.format(k))
@@ -277,31 +277,30 @@ def cfg_from_list(cfg_list):
     """Set config keys via list (e.g., from command line)."""
     from ast import literal_eval
 
-    assert(len(cfg_list) % 2 == 0)
+    assert len(cfg_list) % 2 == 0
 
     for k, v in zip(cfg_list[0::2], cfg_list[1::2]):
         key_list = k.split('.')
         d = __C
 
         for subkey in key_list[:-1]:
-            assert(subkey in d)
+            assert subkey in d
 
             d = d[subkey]
 
         subkey = key_list[-1]
 
-        assert(subkey in d)
+        assert subkey in d
 
         try:
             value = literal_eval(v)
         except:
             # handle the case when v is a string literal
             value = v
-        assert(
-            type(value) == type(d[subkey]),
-            'type {} does not match original type {}'.format(
+
+        assert isinstance(value, type(d[subkey])), 'type {} does not match original type {}'.format(
                 type(value),
                 type(d[subkey])
             )
-        )
+
         d[subkey] = value
diff --git a/lib/fast_rcnn/test.py b/lib/fast_rcnn/test.py
index bd3fe4239..62a616ea1 100644
--- a/lib/fast_rcnn/test.py
+++ b/lib/fast_rcnn/test.py
@@ -15,9 +15,10 @@
 import cv2
 import caffe
 from fast_rcnn.nms_wrapper import nms
-import cPickle
+import six.moves.cPickle as pickle
 from utils.blob import im_list_to_blob
 import os
+from six.moves import range
 
 
 def _get_image_blob(im):
@@ -178,7 +179,7 @@ def im_detect(net, im, boxes=None):
     blobs_out = net.forward(**forward_kwargs)
 
     if cfg.TEST.HAS_RPN:
-        assert(len(im_scales) == 1,) "Only single-image batch implemented"
+        assert len(im_scales) == 1, "Only single-image batch implemented"
         rois = net.blobs['rois'].data.copy()
         # unscale back to raw image space
         boxes = rois[:, 1:5] / im_scales[0]
@@ -213,7 +214,7 @@ def vis_detections(im, class_name, dets, thresh=0.3):
     import matplotlib.pyplot as plt
 
     im = im[:, :, (2, 1, 0)]
-    for i in xrange(np.minimum(10, dets.shape[0])):
+    for i in range(np.minimum(10, dets.shape[0])):
         bbox = dets[i, :4]
         score = dets[i, -1]
 
@@ -237,11 +238,11 @@ def apply_nms(all_boxes, thresh):
     """
     num_classes = len(all_boxes)
     num_images = len(all_boxes[0])
-    nms_boxes = [[[] for _ in xrange(num_images)]
-                 for _ in xrange(num_classes)]
+    nms_boxes = [[[] for _ in range(num_images)]
+                 for _ in range(num_classes)]
 
-    for cls_ind in xrange(num_classes):
-        for im_ind in xrange(num_images):
+    for cls_ind in range(num_classes):
+        for im_ind in range(num_images):
             dets = all_boxes[cls_ind][im_ind]
 
             if dets == []:
@@ -265,8 +266,8 @@ def test_net(net, imdb, max_per_image=100, thresh=0.05, vis=False):
     # all detections are collected into:
     #    all_boxes[cls][image] = N x 5 array of detections in
     #    (x1, y1, x2, y2, score)
-    all_boxes = [[[] for _ in xrange(num_images)]
-                 for _ in xrange(imdb.num_classes)]
+    all_boxes = [[[] for _ in range(num_images)]
+                 for _ in range(imdb.num_classes)]
 
     output_dir = get_output_dir(imdb, net)
 
@@ -276,7 +277,7 @@ def test_net(net, imdb, max_per_image=100, thresh=0.05, vis=False):
     if not cfg.TEST.HAS_RPN:
         roidb = imdb.roidb
 
-    for i in xrange(num_images):
+    for i in range(num_images):
         # filter out any ground truth boxes
         if cfg.TEST.HAS_RPN:
             box_proposals = None
@@ -295,7 +296,7 @@ def test_net(net, imdb, max_per_image=100, thresh=0.05, vis=False):
 
         _t['misc'].tic()
         # skip j = 0, because it's the background class
-        for j in xrange(1, imdb.num_classes):
+        for j in range(1, imdb.num_classes):
             inds = np.where(scores[:, j] > thresh)[0]
             cls_scores = scores[inds, j]
             cls_boxes = boxes[inds, j*4:(j+1)*4]
@@ -310,10 +311,10 @@ def test_net(net, imdb, max_per_image=100, thresh=0.05, vis=False):
         # Limit to max_per_image detections *over all classes*
         if max_per_image > 0:
             image_scores = np.hstack([all_boxes[j][i][:, -1]
-                                      for j in xrange(1, imdb.num_classes)])
+                                      for j in range(1, imdb.num_classes)])
             if len(image_scores) > max_per_image:
                 image_thresh = np.sort(image_scores)[-max_per_image]
-                for j in xrange(1, imdb.num_classes):
+                for j in range(1, imdb.num_classes):
                     keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0]
                     all_boxes[j][i] = all_boxes[j][i][keep, :]
         _t['misc'].toc()
@@ -330,7 +331,7 @@ def test_net(net, imdb, max_per_image=100, thresh=0.05, vis=False):
     det_file = os.path.join(output_dir, 'detections.pkl')
 
     with open(det_file, 'wb') as f:
-        cPickle.dump(all_boxes, f, cPickle.HIGHEST_PROTOCOL)
+        pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL)
 
     print('Evaluating detections')
     imdb.evaluate_detections(all_boxes, output_dir)
diff --git a/lib/fast_rcnn/train.py b/lib/fast_rcnn/train.py
index cb6f7111d..0d603a811 100644
--- a/lib/fast_rcnn/train.py
+++ b/lib/fast_rcnn/train.py
@@ -31,7 +31,7 @@ def __init__(self, solver_prototxt, roidb, output_dir,
         if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and cfg.TRAIN.BBOX_NORMALIZE_TARGETS):
             # RPN can only use precomputed normalization because there are no
             # fixed statistics to compute a priori
-            assert(cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED)
+            assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED
 
         if cfg.TRAIN.BBOX_REG:
             print('Computing bounding-box regression targets...')
diff --git a/lib/roi_data_layer/layer.py b/lib/roi_data_layer/layer.py
index 95cc9ccfd..587b2900f 100644
--- a/lib/roi_data_layer/layer.py
+++ b/lib/roi_data_layer/layer.py
@@ -91,7 +91,7 @@ def setup(self, bottom, top):
         """Setup the RoIDataLayer."""
 
         # parse the layer parameter string, which must be valid YAML
-        layer_params = yaml.load(self.param_str_)
+        layer_params = yaml.load(self.param_str)
 
         self._num_classes = layer_params['num_classes']
 
@@ -148,13 +148,13 @@ def setup(self, bottom, top):
                 idx += 1
 
         print('RoiDataLayer: name_to_top:', self._name_to_top_map)
-        assert(len(top) == len(self._name_to_top_map))
+        assert len(top) == len(self._name_to_top_map)
 
     def forward(self, bottom, top):
         """Get blobs and copy them into this layer's top blob vector."""
         blobs = self._get_next_minibatch()
 
-        for blob_name, blob in blobs.iteritems():
+        for blob_name, blob in blobs.items():
             top_ind = self._name_to_top_map[blob_name]
             # Reshape net's input blobs
             top[top_ind].reshape(*(blob.shape))
diff --git a/lib/roi_data_layer/minibatch.py b/lib/roi_data_layer/minibatch.py
index 2f3db2fa1..c0569cfb3 100644
--- a/lib/roi_data_layer/minibatch.py
+++ b/lib/roi_data_layer/minibatch.py
@@ -12,6 +12,7 @@
 import cv2
 from fast_rcnn.config import cfg
 from utils.blob import prep_im_for_blob, im_list_to_blob
+from six.moves import range
 
 
 def get_minibatch(roidb, num_classes):
@@ -23,12 +24,9 @@ def get_minibatch(roidb, num_classes):
         size=num_images
     )
 
-    assert(
-        cfg.TRAIN.BATCH_SIZE % num_images == 0,
-        'num_images ({}) must divide BATCH_SIZE ({})'.format(
+    assert (cfg.TRAIN.BATCH_SIZE % num_images == 0), 'num_images ({}) must divide BATCH_SIZE ({})'.format(
             num_images, cfg.TRAIN.BATCH_SIZE
         )
-    )
 
     rois_per_image = cfg.TRAIN.BATCH_SIZE / num_images
     fg_rois_per_image = np.round(cfg.TRAIN.FG_FRACTION * rois_per_image)
@@ -39,8 +37,9 @@ def get_minibatch(roidb, num_classes):
     blobs = {'data': im_blob}
 
     if cfg.TRAIN.HAS_RPN:
-        assert(len(im_scales) == 1,) "Single batch only"
-        assert(len(roidb) == 1,) "Single batch only"
+        assert len(im_scales) == 1, "Single batch only"
+        assert len(roidb) == 1, "Single batch only"
+
         # gt boxes: (x1, y1, x2, y2, cls)
         gt_inds = np.where(roidb[0]['gt_classes'] != 0)[0]
         gt_boxes = np.empty((len(gt_inds), 5), dtype=np.float32)
@@ -59,7 +58,7 @@ def get_minibatch(roidb, num_classes):
         bbox_inside_blob = np.zeros(bbox_targets_blob.shape, dtype=np.float32)
 
         # all_overlaps = []
-        for im_i in xrange(num_images):
+        for im_i in range(num_images):
             labels, overlaps, im_rois, bbox_targets, bbox_inside_weights \
                 = _sample_rois(roidb[im_i], fg_rois_per_image, rois_per_image,
                                num_classes)
@@ -149,7 +148,7 @@ def _get_image_blob(roidb, scale_inds):
     num_images = len(roidb)
     processed_ims = []
     im_scales = []
-    for i in xrange(num_images):
+    for i in range(num_images):
         im = cv2.imread(roidb[i]['image'])
         if roidb[i]['flipped']:
             im = im[:, ::-1, :]
@@ -204,7 +203,7 @@ def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps):
     Visualize a mini-batch for debugging.
     """
     import matplotlib.pyplot as plt
-    for i in xrange(rois_blob.shape[0]):
+    for i in range(rois_blob.shape[0]):
         rois = rois_blob[i, :]
         im_ind = rois[0]
         roi = rois[1:]
diff --git a/lib/roi_data_layer/roidb.py b/lib/roi_data_layer/roidb.py
index a07ede114..7a7559aec 100644
--- a/lib/roi_data_layer/roidb.py
+++ b/lib/roi_data_layer/roidb.py
@@ -14,6 +14,7 @@
 from fast_rcnn.bbox_transform import bbox_transform
 from utils.cython_bbox import bbox_overlaps
 import PIL
+from six.moves import range
 
 
 def prepare_roidb(imdb):
@@ -25,9 +26,9 @@ def prepare_roidb(imdb):
     recorded.
     """
     sizes = [PIL.Image.open(imdb.image_path_at(i)).size
-             for i in xrange(imdb.num_images)]
+             for i in range(imdb.num_images)]
     roidb = imdb.roidb
-    for i in xrange(len(imdb.image_index)):
+    for i in range(len(imdb.image_index)):
         roidb[i]['image'] = imdb.image_path_at(i)
         roidb[i]['width'] = sizes[i][0]
         roidb[i]['height'] = sizes[i][1]
@@ -42,23 +43,23 @@ def prepare_roidb(imdb):
         # sanity checks
         # max overlap of 0 => class should be zero (background)
         zero_inds = np.where(max_overlaps == 0)[0]
-        assert(all(max_classes[zero_inds] == 0))
+        assert all(max_classes[zero_inds] == 0)
         # max overlap > 0 => class should not be zero (must be a fg class)
         nonzero_inds = np.where(max_overlaps > 0)[0]
-        assert(all(max_classes[nonzero_inds] != 0))
+        assert all(max_classes[nonzero_inds] != 0)
 
 
 def add_bbox_regression_targets(roidb):
     """
     Add information needed to train bounding-box regressors.
     """
-    assert(len(roidb) > 0)
-    assert('max_classes' in roidb[0], 'Did you call prepare_roidb first?')
+    assert len(roidb) > 0
+    assert 'max_classes' in roidb[0], 'Did you call prepare_roidb first?'
 
     num_images = len(roidb)
     # Infer number of classes from the number of columns in gt_overlaps
     num_classes = roidb[0]['gt_overlaps'].shape[1]
-    for im_i in xrange(num_images):
+    for im_i in range(num_images):
         rois = roidb[im_i]['boxes']
         max_overlaps = roidb[im_i]['max_overlaps']
         max_classes = roidb[im_i]['max_classes']
@@ -80,9 +81,9 @@ def add_bbox_regression_targets(roidb):
         class_counts = np.zeros((num_classes, 1)) + cfg.EPS
         sums = np.zeros((num_classes, 4))
         squared_sums = np.zeros((num_classes, 4))
-        for im_i in xrange(num_images):
+        for im_i in range(num_images):
             targets = roidb[im_i]['bbox_targets']
-            for cls in xrange(1, num_classes):
+            for cls in range(1, num_classes):
                 cls_inds = np.where(targets[:, 0] == cls)[0]
                 if cls_inds.size > 0:
                     class_counts[cls] += cls_inds.size
@@ -102,9 +103,9 @@ def add_bbox_regression_targets(roidb):
     # Normalize targets
     if cfg.TRAIN.BBOX_NORMALIZE_TARGETS:
         print("Normalizing targets")
-        for im_i in xrange(num_images):
+        for im_i in range(num_images):
             targets = roidb[im_i]['bbox_targets']
-            for cls in xrange(1, num_classes):
+            for cls in range(1, num_classes):
                 cls_inds = np.where(targets[:, 0] == cls)[0]
                 roidb[im_i]['bbox_targets'][cls_inds, 1:] -= means[cls, :]
                 roidb[im_i]['bbox_targets'][cls_inds, 1:] /= stds[cls, :]
diff --git a/lib/rpn/anchor_target_layer.py b/lib/rpn/anchor_target_layer.py
index e5463fb39..21ce5639d 100644
--- a/lib/rpn/anchor_target_layer.py
+++ b/lib/rpn/anchor_target_layer.py
@@ -25,7 +25,7 @@ class AnchorTargetLayer(caffe.Layer):
     """
 
     def setup(self, bottom, top):
-        layer_params = yaml.load(self.param_str_)
+        layer_params = yaml.load(self.param_str)
         anchor_scales = layer_params.get('scales', (8, 16, 32))
         self._anchors = generate_anchors(scales=np.array(anchor_scales))
         self._num_anchors = self._anchors.shape[0]
@@ -75,10 +75,7 @@ def forward(self, bottom, top):
         # filter out-of-image anchors
         # measure GT overlap
 
-        assert(
-            bottom[0].data.shape[0] == 1,
-            'Only single item batches are supported'
-        )
+        assert bottom[0].data.shape[0] == 1, 'Only single item batches are supported'
 
         # map of shape (..., H, W)
         height, width = bottom[0].data.shape[-2:]
@@ -190,10 +187,9 @@ def forward(self, bottom, top):
             positive_weights = np.ones((1, 4)) * 1.0 / num_examples
             negative_weights = np.ones((1, 4)) * 1.0 / num_examples
         else:
-            assert(
-                (cfg.TRAIN.RPN_POSITIVE_WEIGHT > 0) &
-                (cfg.TRAIN.RPN_POSITIVE_WEIGHT < 1)
-            )
+            assert ((cfg.TRAIN.RPN_POSITIVE_WEIGHT > 0) &
+                    (cfg.TRAIN.RPN_POSITIVE_WEIGHT < 1))
+
             positive_weights = (
                 cfg.TRAIN.RPN_POSITIVE_WEIGHT / np.sum(labels == 1)
             )
@@ -254,8 +250,8 @@ def forward(self, bottom, top):
             (1, height, width, A * 4)
         ).transpose(0, 3, 1, 2)
 
-        assert(bbox_inside_weights.shape[2] == height)
-        assert(bbox_inside_weights.shape[3] == width)
+        assert bbox_inside_weights.shape[2] == height
+        assert bbox_inside_weights.shape[3] == width
         top[2].reshape(*bbox_inside_weights.shape)
         top[2].data[...] = bbox_inside_weights
 
@@ -264,8 +260,8 @@ def forward(self, bottom, top):
             (1, height, width, A * 4)
         ).transpose(0, 3, 1, 2)
 
-        assert(bbox_outside_weights.shape[2] == height)
-        assert(bbox_outside_weights.shape[3] == width)
+        assert bbox_outside_weights.shape[2] == height
+        assert bbox_outside_weights.shape[3] == width
         top[3].reshape(*bbox_outside_weights.shape)
         top[3].data[...] = bbox_outside_weights
 
@@ -303,9 +299,9 @@ def _compute_targets(ex_rois, gt_rois):
     Compute bounding-box regression targets for an image.
     """
 
-    assert(ex_rois.shape[0] == gt_rois.shape[0])
-    assert(ex_rois.shape[1] == 4)
-    assert(gt_rois.shape[1] == 5)
+    assert ex_rois.shape[0] == gt_rois.shape[0]
+    assert ex_rois.shape[1] == 4
+    assert gt_rois.shape[1] == 5
 
     return bbox_transform(
             ex_rois, gt_rois[:, :4]
diff --git a/lib/rpn/generate.py b/lib/rpn/generate.py
index 177d9a678..2894a6ed3 100644
--- a/lib/rpn/generate.py
+++ b/lib/rpn/generate.py
@@ -10,6 +10,7 @@
 from utils.timer import Timer
 import numpy as np
 import cv2
+from six.moves import range
 
 
 def _vis_proposals(im, dets, thresh=0.5):
@@ -68,7 +69,7 @@ def _get_image_blob(im):
 
     processed_ims = []
 
-    assert(len(cfg.TEST.SCALES) == 1)
+    assert len(cfg.TEST.SCALES) == 1
     target_size = cfg.TEST.SCALES[0]
 
     im_scale = float(target_size) / float(im_size_min)
@@ -110,8 +111,8 @@ def imdb_proposals(net, imdb):
     """Generate RPN proposals on all images in an imdb."""
 
     _t = Timer()
-    imdb_boxes = [[] for _ in xrange(imdb.num_images)]
-    for i in xrange(imdb.num_images):
+    imdb_boxes = [[] for _ in range(imdb.num_images)]
+    for i in range(imdb.num_images):
         im = cv2.imread(imdb.image_path_at(i))
         _t.tic()
         imdb_boxes[i], scores = im_proposals(net, im)
diff --git a/lib/rpn/generate_anchors.py b/lib/rpn/generate_anchors.py
index d4c90e9f2..48d899387 100644
--- a/lib/rpn/generate_anchors.py
+++ b/lib/rpn/generate_anchors.py
@@ -6,6 +6,7 @@
 # --------------------------------------------------------
 
 import numpy as np
+from six.moves import range
 
 # Verify that we compute the same anchors as Shaoqing's matlab implementation:
 #
@@ -46,7 +47,7 @@ def generate_anchors(base_size=16, ratios=[0.5, 1, 2],
     ratio_anchors = _ratio_enum(base_anchor, ratios)
     anchors = np.vstack(
         [_scale_enum(ratio_anchors[i, :], scales)
-            for i in xrange(ratio_anchors.shape[0])]
+            for i in range(ratio_anchors.shape[0])]
     )
 
     return anchors
diff --git a/lib/rpn/proposal_layer.py b/lib/rpn/proposal_layer.py
index 2fd14f2ff..f8a344c84 100644
--- a/lib/rpn/proposal_layer.py
+++ b/lib/rpn/proposal_layer.py
@@ -9,7 +9,7 @@
 import numpy as np
 import yaml
 from fast_rcnn.config import cfg
-from generate_anchors import generate_anchors
+from rpn.generate_anchors import generate_anchors
 from fast_rcnn.bbox_transform import bbox_transform_inv, clip_boxes
 from fast_rcnn.nms_wrapper import nms
 
@@ -22,9 +22,17 @@ class ProposalLayer(caffe.Layer):
     transformations to a set of regular boxes (called "anchors").
     """
 
+    def get_phase(self):
+        if self.phase == 0:
+            return 'TRAIN'
+        elif self.phase == 1:
+            return 'TEST'
+        else:
+            raise ValueError("Unkown Phase")
+
     def setup(self, bottom, top):
         # parse the layer parameter string, which must be valid YAML
-        layer_params = yaml.load(self.param_str_)
+        layer_params = yaml.load(self.param_str)
 
         self._feat_stride = layer_params['feat_stride']
         anchor_scales = layer_params.get('scales', (8, 16, 32))
@@ -59,12 +67,9 @@ def forward(self, bottom, top):
         # take after_nms_topN proposals after NMS
         # return the top proposals (-> RoIs top, scores top)
 
-        assert(
-            bottom[0].data.shape[0] == 1,
-            'Only single item batches are supported'
-        )
+        assert bottom[0].data.shape[0] == 1, 'Only single item batches are supported'
 
-        cfg_key = str(self.phase)  # either 'TRAIN' or 'TEST'
+        cfg_key = self.get_phase()  # either 'TRAIN' or 'TEST'
         pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N
         post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
         nms_thresh = cfg[cfg_key].RPN_NMS_THRESH
diff --git a/lib/rpn/proposal_target_layer.py b/lib/rpn/proposal_target_layer.py
index b7440161b..6ff6ea4da 100644
--- a/lib/rpn/proposal_target_layer.py
+++ b/lib/rpn/proposal_target_layer.py
@@ -23,7 +23,7 @@ class ProposalTargetLayer(caffe.Layer):
     """
 
     def setup(self, bottom, top):
-        layer_params = yaml.load(self.param_str_)
+        layer_params = yaml.load(self.param_str)
         self._num_classes = layer_params['num_classes']
 
         # sampled rois (0, x1, y1, x2, y2)
@@ -53,10 +53,7 @@ def forward(self, bottom, top):
         )
 
         # Sanity check: single batch only
-        assert(
-            np.all(all_rois[:, 0] == 0),
-            'Only single item batches are supported'
-        )
+        assert np.all(all_rois[:, 0] == 0), 'Only single item batches are supported'
 
         num_images = 1
         rois_per_image = cfg.TRAIN.BATCH_SIZE / num_images
@@ -143,9 +140,9 @@ def _compute_targets(ex_rois, gt_rois, labels):
     Compute bounding-box regression targets for an image.
     """
 
-    assert(ex_rois.shape[0] == gt_rois.shape[0])
-    assert(ex_rois.shape[1] == 4)
-    assert(gt_rois.shape[1] == 4)
+    assert ex_rois.shape[0] == gt_rois.shape[0]
+    assert ex_rois.shape[1] == 4
+    assert gt_rois.shape[1] == 4
 
     targets = bbox_transform(ex_rois, gt_rois)
     if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
diff --git a/lib/setup.py b/lib/setup.py
index c7b88d8e5..b6a73dce2 100644
--- a/lib/setup.py
+++ b/lib/setup.py
@@ -56,7 +56,7 @@ def locate_cuda():
         'lib64': pjoin(home, 'lib64')
     }
 
-    for k, v in cudaconfig.iteritems():
+    for k, v in cudaconfig.items():
         if not os.path.exists(v):
             raise EnvironmentError(
                     'The CUDA %s path could not be located in %s' % (k, v)
diff --git a/lib/utils/blob.py b/lib/utils/blob.py
index adab9df44..738dc1602 100644
--- a/lib/utils/blob.py
+++ b/lib/utils/blob.py
@@ -9,6 +9,7 @@
 
 import numpy as np
 import cv2
+from six.moves import range
 
 
 def im_list_to_blob(ims):
@@ -20,7 +21,7 @@ def im_list_to_blob(ims):
     num_images = len(ims)
     blob = np.zeros((num_images, max_shape[0], max_shape[1], 3),
                     dtype=np.float32)
-    for i in xrange(num_images):
+    for i in range(num_images):
         im = ims[i]
         blob[i, 0:im.shape[0], 0:im.shape[1], :] = im
     # Move channels (axis 3) to axis 1
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 000000000..ea1584879
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,2 @@
+Cython>=0.21
+easydict>=1.6
\ No newline at end of file
diff --git a/tools/compress_net.py b/tools/compress_net.py
index f4d25deee..53938504c 100755
--- a/tools/compress_net.py
+++ b/tools/compress_net.py
@@ -1,4 +1,4 @@
-#!/usr/bin/env python
+#!/usr/bin/env python3
 
 # --------------------------------------------------------
 # Fast R-CNN
diff --git a/tools/demo.py b/tools/demo.py
index d27cf8035..f984fe703 100755
--- a/tools/demo.py
+++ b/tools/demo.py
@@ -1,4 +1,4 @@
-#!/usr/bin/env python
+#!/usr/bin/env python3
 
 # --------------------------------------------------------
 # Faster R-CNN
@@ -18,6 +18,7 @@
 from fast_rcnn.test import im_detect
 from fast_rcnn.nms_wrapper import nms
 from utils.timer import Timer
+from six.moves import range
 import matplotlib.pyplot as plt
 import numpy as np
 import scipy.io as sio
@@ -85,7 +86,9 @@ def vis_detections(im, class_name, dets, thresh=0.5):
 
 
 def demo(net, image_name):
-    """Detect object classes in an image using pre-computed object proposals."""
+    """
+    Detect object classes in an image using pre-computed object proposals.
+    """
 
     # Load the demo image
     im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)
@@ -166,7 +169,7 @@ def parse_args():
 
     # Warmup on a dummy image
     im = 128 * np.ones((300, 500, 3), dtype=np.uint8)
-    for i in xrange(2):
+    for i in range(2):
         _, _ = im_detect(net, im)
 
     im_names = [
diff --git a/tools/eval_recall.py b/tools/eval_recall.py
index 61e25bb9f..4cefc34ff 100755
--- a/tools/eval_recall.py
+++ b/tools/eval_recall.py
@@ -1,4 +1,4 @@
-#!/usr/bin/env python
+#!/usr/bin/env python3
 
 import _init_paths
 from fast_rcnn.config import cfg, cfg_from_file, cfg_from_list
@@ -64,7 +64,7 @@ def parse_args():
 
     def recall_at(t):
         ind = np.where(thresholds > t - 1e-5)[0][0]
-        assert(np.isclose(thresholds[ind], t))
+        assert np.isclose(thresholds[ind], t)
 
         return recalls[ind]
 
diff --git a/tools/reval.py b/tools/reval.py
index 7b3dc95f1..0f6233d8e 100755
--- a/tools/reval.py
+++ b/tools/reval.py
@@ -1,4 +1,4 @@
-#!/usr/bin/env python
+#!/usr/bin/env python3
 
 # --------------------------------------------------------
 # Fast R-CNN
diff --git a/tools/rpn_generate.py b/tools/rpn_generate.py
index 16e942c65..8e5f39645 100755
--- a/tools/rpn_generate.py
+++ b/tools/rpn_generate.py
@@ -1,4 +1,4 @@
-#!/usr/bin/env python
+#!/usr/bin/env python3
 
 # --------------------------------------------------------
 # Fast/er/ R-CNN
diff --git a/tools/test_net.py b/tools/test_net.py
index a4dc8a19a..73c5107ca 100755
--- a/tools/test_net.py
+++ b/tools/test_net.py
@@ -1,4 +1,4 @@
-#!/usr/bin/env python
+#!/usr/bin/env python3
 
 # --------------------------------------------------------
 # Fast R-CNN
diff --git a/tools/train_faster_rcnn_alt_opt.py b/tools/train_faster_rcnn_alt_opt.py
index 9fa9d277d..3e2b03a53 100755
--- a/tools/train_faster_rcnn_alt_opt.py
+++ b/tools/train_faster_rcnn_alt_opt.py
@@ -1,4 +1,4 @@
-#!/usr/bin/env python
+#!/usr/bin/env python3
 
 # --------------------------------------------------------
 # Faster R-CNN
diff --git a/tools/train_net.py b/tools/train_net.py
index 7f9c2c0a6..b991a210a 100755
--- a/tools/train_net.py
+++ b/tools/train_net.py
@@ -1,4 +1,4 @@
-#!/usr/bin/env python
+#!/usr/bin/env python3
 
 # --------------------------------------------------------
 # Fast R-CNN
diff --git a/tools/train_svms.py b/tools/train_svms.py
index 65832c194..e1802385b 100755
--- a/tools/train_svms.py
+++ b/tools/train_svms.py
@@ -1,4 +1,4 @@
-#!/usr/bin/env python
+#!/usr/bin/env python3
 
 # --------------------------------------------------------
 # Fast R-CNN
@@ -26,6 +26,7 @@
 from sklearn import svm
 import os
 import sys
+from six.moves import range
 
 
 class SVMTrainer(object):
@@ -55,7 +56,7 @@ def _get_feature_scale(self, num_images=100):
         total_norm = 0.0
         count = 0.0
         inds = npr.choice(
-            xrange(self.imdb.num_images), size=num_images,
+            range(self.imdb.num_images), size=num_images,
             replace=False
         )
 
@@ -83,12 +84,12 @@ def _get_pos_counts(self):
         counts = np.zeros((len(self.imdb.classes)), dtype=np.int)
         roidb = self.imdb.roidb
 
-        for i in xrange(len(roidb)):
-            for j in xrange(1, self.imdb.num_classes):
+        for i in range(len(roidb)):
+            for j in range(1, self.imdb.num_classes):
                 I = np.where(roidb[i]['gt_classes'] == j)[0]
                 counts[j] += len(I)
 
-        for j in xrange(1, self.imdb.num_classes):
+        for j in range(1, self.imdb.num_classes):
             print('class {:s} has {:d} positives'.format(
                 self.imdb.classes[j], counts[j]
             ))
@@ -98,14 +99,14 @@ def _get_pos_counts(self):
     def get_pos_examples(self):
         counts = self._get_pos_counts()
 
-        for i in xrange(len(counts)):
+        for i in range(len(counts)):
             self.trainers[i].alloc_pos(counts[i])
 
         _t = Timer()
         roidb = self.imdb.roidb
         num_images = len(roidb)
         # num_images = 100
-        for i in xrange(num_images):
+        for i in range(num_images):
             im = cv2.imread(self.imdb.image_path_at(i))
 
             if roidb[i]['flipped']:
@@ -118,7 +119,7 @@ def get_pos_examples(self):
             _t.toc()
             feat = self.net.blobs[self.layer].data
 
-            for j in xrange(1, self.imdb.num_classes):
+            for j in range(1, self.imdb.num_classes):
                 cls_inds = np.where(roidb[i]['gt_classes'][gt_inds] == j)[0]
                 if len(cls_inds) > 0:
                     cls_feat = feat[cls_inds, :]
@@ -155,7 +156,7 @@ def train_with_hard_negatives(self):
         num_images = len(roidb)
         # num_images = 100
 
-        for i in xrange(num_images):
+        for i in range(num_images):
             im = cv2.imread(self.imdb.image_path_at(i))
 
             if roidb[i]['flipped']:
@@ -165,7 +166,7 @@ def train_with_hard_negatives(self):
             scores, boxes = im_detect(self.net, im, roidb[i]['boxes'])
             _t.toc()
             feat = self.net.blobs[self.layer].data
-            for j in xrange(1, self.imdb.num_classes):
+            for j in range(1, self.imdb.num_classes):
                 hard_inds = np.where(
                     (scores[:, j] > self.hard_thresh) &
                     (roidb[i]['gt_overlaps'][:, j].toarray().ravel() < self.neg_iou_thresh)
@@ -208,7 +209,7 @@ def train(self):
 
         # One final SVM retraining for each class
         # Install SVMs into net
-        for j in xrange(1, self.imdb.num_classes):
+        for j in range(1, self.imdb.num_classes):
             new_w_b = self.trainers[j].append_neg_and_retrain(force=True)
             self.update_net(j, new_w_b[0], new_w_b[1])
 
@@ -282,11 +283,10 @@ def train(self):
 
         # Sanity check
         scores_ret = (
-                X * 1.0 / self.feature_scale).dot(w.T * self.feature_scale) + b
-        assert(
-            np.allclose(scores, scores_ret[:, 0], atol=1e-5),
-            "Scores from returned model don't match decision function"
-        )
+                X * 1.0 / self.feature_scale
+        ).dot(w.T * self.feature_scale) + b
+
+        assert np.allclose(scores, scores_ret[:, 0], atol=1e-5), "Scores from returned model don't match decision function"
 
         return ((w * self.feature_scale, b), pos_scores, neg_scores)