-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathimage_sampling.py
235 lines (194 loc) · 9.06 KB
/
image_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# Write and Paint: Generative Vision-Language Models are Unified Modal Learners (https://arxiv.org/abs/2206.07699)
# Github: https://github.com/shizhediao/DaVinci
# Copyright (c) 2023, ByteDance Inc.
# All rights reserved.
import argparse
import os
import sys
import ruamel.yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from models.model_image_sampling import DaVinci
from models.tokenization_bert import BertTokenizer
import utils
from dataset import create_dataset, create_sampler, create_loader
from scheduler import create_scheduler
from optim import create_optimizer
from torch.optim import Optimizer
from torch import optim
from torch.distributed.elastic.multiprocessing.errors import record
from util.checkpointer import Checkpointer
from util.hdfs_io import hmkdir, hcopy
from accelerators.apex_ddp_accelerator import ApexDDPAccelerator
# for dall_e import module, we need to add root path
root_dir = Path(__file__).parent.absolute()
model_dir = root_dir / 'models'
sys.path.insert(0, str(root_dir))
sys.path.insert(0, str(model_dir))
MAX_TOKENS = 25
@torch.no_grad()
def train(model, pair_data_loader, optimizer, epoch_info, device, scheduler, config, accelerator, checkpointer, tokenizer):
# eval - image generation
model.eval()
start_epoch, _ = epoch_info
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(
window_size=50, fmt='{value:.8f}'))
metric_logger.add_meter('loss', utils.SmoothedValue(
window_size=50, fmt='{value:.4f}'))
header = 'Train Epoch: [{}]'.format(start_epoch)
print_freq = 50
world_size = int(os.environ.get('WORLD_SIZE', 1))
step_per_epoch = math.ceil(
config['train_dataset_size'] / (config['batch_size']*world_size))
current_step = start_epoch * step_per_epoch
global_step = current_step + 1
for i, (image, visual_token_image, org_texts, fname) in enumerate(metric_logger.log_every(pair_data_loader, print_freq, header, step_per_epoch, epoch_info)):
current_epoch = int(global_step/step_per_epoch)
image = image.to(device, non_blocking=True)
visual_token_image = visual_token_image.to(device,non_blocking=True)
prefix_image = None
prefix_image_small = None
suffix_image_small = visual_token_image
org_texts = org_texts * config["num_images"]
text_full = tokenizer(org_texts, padding='max_length', truncation=True, max_length=MAX_TOKENS, return_tensors="pt").to(device)
loss, logits = model(image, context=None, gen_text=None, text_full=text_full, prefix_image=prefix_image, suffix_image=suffix_image_small,
prefix_image_small=prefix_image_small, visual_token_image=None, use_dalle=True, train=True, decode=False, raw_caption=org_texts, captionindex=i)
metric_logger.update(loss=loss.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
global_step += 1
train_stats = {k: "{:.3f}".format(
meter.global_avg) for k, meter in metric_logger.meters.items()}
if global_step % step_per_epoch == 0 or global_step % config['checkpoint_frequent'] == 0:
if utils.is_main_process():
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': current_epoch,
}
with open("./log.txt", "a") as f:
f.write(json.dumps(log_stats) + "\n")
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
@record
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device)
if utils.is_main_process():
print(f"### val_file: {config['val_file']}")
sys.stdout.flush()
yaml.dump(config, open('./config.yaml', 'w'))
hcopy('./config.yaml', args.output_dir)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
start_epoch = 0
max_epoch = config['schedular']['epochs']
#### Dataset ####
print("Creating dataset")
pair_dataset = [create_dataset('dalle_gen', config)]
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler(
pair_dataset, [False], num_tasks, global_rank)
else:
samplers = [None]
pair_data_loader = create_loader(pair_dataset, samplers, batch_size=[
config['batch_size']], num_workers=[4], is_trains=[False], collate_fns=[None])[0]
tokenizer = BertTokenizer.from_pretrained(
args.encoder, bos_token='[CLS]', eos_token='[SEP]', add_single_sep=False)
#### Model ####
print("Creating model")
model = DaVinci(config=config, encoder=args.encoder, text_decoder=args.text_decoder,
tokenizer=tokenizer, init_deit=True, init_dalle=True, device=device)
model = model.to(device)
print("DAVINCI have {} paramerters in total".format(
sum(x.numel() for x in model.parameters())))
world_size = int(os.environ.get('WORLD_SIZE', 1))
rank = int(os.environ.get('RANK', 0))
local_rank = int(os.environ.get('LOCAL_RANK', 0))
arg_opt = utils.AttrDict(config['optimizer'])
optimizer = create_optimizer(arg_opt, model)
arg_sche = utils.AttrDict(config['schedular'])
update_steps_per_epoch = math.ceil(config['train_dataset_size'] / (
config['batch_size']*world_size) / int(config['accelerator']['GRAD_ACCUMULATE_STEPS']))
arg_sche['num_warmup_steps'] = arg_sche['warmup_epochs'] * \
update_steps_per_epoch
arg_sche['num_training_steps'] = arg_sche['epochs'] * \
update_steps_per_epoch
lr_scheduler, _ = create_scheduler(arg_sche, optimizer)
arg_acc = utils.AttrDict(config['accelerator'])
accelerator = ApexDDPAccelerator(arg_acc, logger=None)
if args.checkpoint:
checkpoint = torch.load(args.checkpoint, map_location='cpu')
state_dict = checkpoint['model']
start_epoch = checkpoint['epoch']+1
model.load_state_dict(state_dict, strict=False) # for clip model
print('load checkpoint from %s' % args.checkpoint)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu])
model_without_ddp = model.module
checkpointer = Checkpointer(args.output_dir)
print("Start training")
start_time = time.time()
epoch_info = (start_epoch, max_epoch)
train(model, pair_data_loader, optimizer, epoch_info, device, lr_scheduler, config,
accelerator, checkpointer, tokenizer)
dist.barrier()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if utils.is_main_process():
hcopy('./log.txt', args.output_dir)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/Pretrain_davinci.yaml')
parser.add_argument('--checkpoint', default='')
parser.add_argument('--resume', default=False, type=bool)
parser.add_argument('--output_dir', default='Pretrain/')
parser.add_argument('--encoder', default='bert-base-uncased')
parser.add_argument('--text_decoder', default='bert-base-uncased')
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument('--distributed', default=True, type=bool)
parser.add_argument('--override_cfg', default="",
type=str, help="Use ; to separate keys")
args = parser.parse_args()
# currently support the override of params at max depth 2
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
if args.override_cfg != "":
override_cfg_str = args.override_cfg.replace(
";", "\n").replace(":", ": ")
override_cfg = yaml.load(override_cfg_str, Loader=yaml.Loader)
for k, v in override_cfg.items():
if type(v) == dict:
for kk, vv in v.items():
config[k][kk] = vv
else:
config[k] = v
if not args.output_dir.startswith('hdfs'):
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
hmkdir(args.output_dir)
print("args.output_dir: ", args.output_dir)
main(args, config)