-
Notifications
You must be signed in to change notification settings - Fork 3
/
VQA.py
253 lines (196 loc) · 10.4 KB
/
VQA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Write and Paint: Generative Vision-Language Models are Unified Modal Learners (https://arxiv.org/abs/2206.07699)
# Github: https://github.com/shizhediao/DaVinci
# Copyright (c) 2023, ByteDance Inc.
# All rights reserved.
import argparse
import os, sys
import ruamel.yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from models.model_vqa import DaVinciVQA
from models.resnet import interpolate_pos_embed
from models.tokenization_bert import BertTokenizer
import utils
from dataset.utils import save_result
from dataset import create_dataset, create_sampler, create_loader, vqa_collate_fn
from scheduler import create_scheduler
from optim import create_optimizer
from apex import amp
root_dir = Path(__file__).parent.absolute()
model_dir = root_dir / 'models'
sys.path.insert(0, str(root_dir))
sys.path.insert(0, str(model_dir))
def train(model, data_loader, optimizer, tokenizer, epoch, warmup_epochs, device, scheduler, config):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.8f}'))
metric_logger.add_meter('loss', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
for i,(image, question, answer, weights, question_id, n) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
image, weights = image.to(device,non_blocking=True), weights.to(device,non_blocking=True)
question_input = tokenizer(question, padding='longest', truncation=True, max_length=25, return_tensors="pt").to(device)
answer_input = tokenizer(answer, padding='longest', return_tensors="pt").to(device)
loss = model(image, question_input, answer_input, train=True, k=n, weights=weights)
optimizer.zero_grad()
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
# loss.backward()
optimizer.step()
scheduler.step()
metric_logger.update(loss=loss.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Train Averaged stats:", metric_logger.global_avg())
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def test(model, data_loader, tokenizer, device, config) :
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Generate VQA test result:'
print_freq = 50
result = []
answer_list = [answer+config['eos'] for answer in data_loader.dataset.answer_list]
answer_input = tokenizer(answer_list, padding='longest', return_tensors='pt').to(device)
for n, (image, question, question_id) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
image = image.to(device,non_blocking=True)
question_input = tokenizer(question, padding='longest', return_tensors="pt").to(device)
topk_ids, topk_probs = model(image, question_input, answer_input, train=False, k=config['k_test'])
for ques_id, topk_id, topk_prob in zip(question_id, topk_ids, topk_probs):
ques_id = int(ques_id.item())
_, pred = topk_prob.max(dim=0)
result.append({"question_id":ques_id, "answer":data_loader.dataset.answer_list[topk_id[pred]]})
return result
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
start_epoch = 0
max_epoch = config['schedular']['epochs']
warmup_epochs = config['schedular']['warmup_epochs']
#### Dataset ####
print("Creating vqa datasets")
datasets = create_dataset('vqa', config)
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler(datasets, [True, False, False], num_tasks, global_rank)
else:
samplers = [None, None, None]
train_loader, val_loader, test_loader = create_loader(datasets,samplers,
batch_size=[config['batch_size_train'], config['batch_size_test'], config['batch_size_test']],
num_workers=[4,4,4],is_trains=[True, False, False],
collate_fns=[vqa_collate_fn,vqa_collate_fn,None])
tokenizer = BertTokenizer.from_pretrained(args.encoder, bos_token='[CLS]', eos_token='[SEP]', add_single_sep=False)
#### Model ####
print("Creating model")
model = DaVinciVQA(config=config, encoder=args.encoder, text_decoder=args.text_decoder, tokenizer=tokenizer)
model = model.to(device)
arg_opt = utils.AttrDict(config['optimizer'])
optimizer = create_optimizer(arg_opt, model)
arg_sche = utils.AttrDict(config['schedular'])
step_per_epoch = len(train_loader)
arg_sche['num_warmup_steps'] = arg_sche['warmup_epochs'] * step_per_epoch
arg_sche['num_training_steps'] = arg_sche['epochs'] * step_per_epoch
lr_scheduler, _ = create_scheduler(arg_sche, optimizer)
if args.checkpoint:
if args.evaluate:
checkpoint = torch.load(args.checkpoint, map_location='cpu')
state_dict = checkpoint['model']
msg = model.load_state_dict(state_dict,strict=False)
print('load checkpoint from %s'%args.checkpoint)
print(msg)
else:
checkpoint = torch.load(args.checkpoint, map_location='cpu')
state_dict = checkpoint['model']
for key in list(state_dict.keys())[:]:
new_key = 'davinci.'+key
state_dict[new_key] = state_dict[key]
del state_dict[key]
# reshape positional embedding to accomodate for image resolution change
pos_embed_reshaped = interpolate_pos_embed(state_dict['davinci.visual_encoder.pos_embed'],model.davinci.visual_encoder)
state_dict['davinci.visual_encoder.pos_embed'] = pos_embed_reshaped
msg = model.load_state_dict(state_dict,strict=False)
print('load checkpoint from %s'%args.checkpoint)
print(msg)
model_without_ddp = model
model, optimizer = amp.initialize(model, optimizer, opt_level="O1") # 这里是“欧一”,不是“零一”
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
print("Start training")
start_time = time.time()
for epoch in range(start_epoch, max_epoch):
if not args.evaluate:
if args.distributed:
train_loader.sampler.set_epoch(epoch)
train_stats = train(model, train_loader, optimizer, tokenizer, epoch, warmup_epochs, device, lr_scheduler, config)
vqa_test_result = test(model, test_loader, tokenizer, device, config)
result_file = save_result(vqa_test_result, args.result_dir, 'vqa_test_result_epoch%d'%epoch)
if args.evaluate:
break
if utils.is_main_process():
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
}
with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
f.write(json.dumps(log_stats) + "\n")
save_obj = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'config': config,
'epoch': epoch,
}
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_%02d.pth'%epoch))
dist.barrier()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/VQA.yaml')
parser.add_argument('--checkpoint', default='')
parser.add_argument('--output_dir', default='output/vqa')
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--encoder', default='bert-base-uncased')
parser.add_argument('--text_decoder', default='bert-base-uncased')
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=True, type=bool)
parser.add_argument('--override_cfg', default="", type=str, help="Use ; to separate keys")
args = parser.parse_args()
# currently support the override of params at max depth 2
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
if args.override_cfg != "":
override_cfg_str = args.override_cfg.replace(";", "\n").replace(":", ": ")
override_cfg = yaml.load(override_cfg_str, Loader=yaml.Loader)
for k, v in override_cfg.items():
if type(v) == dict:
for kk, vv in v.items():
config[k][kk] = vv
else:
config[k] = v
args.result_dir = os.path.join(args.output_dir, 'result')
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
Path(args.result_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
main(args, config)