-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpreprocessing.py
122 lines (105 loc) · 4.82 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import pickle
import h5py
import argparse
import os
import torch
import torch.nn as nn
import numpy as np
import scipy.io as sio
import torchvision.models.resnet as models
from torchvision import datasets, transforms
from torch.utils.data import Dataset, DataLoader
from PIL import Image
class CustomedDataset(Dataset):
def __init__(self, dataset, img_dir, file_paths, transform=None):
self.dataset = dataset
self.matcontent = sio.loadmat(file_paths)
self.image_files = np.squeeze(self.matcontent['image_files'])
self.img_dir = img_dir
self.transform = transform
def __len__(self):
return len(self.image_files)
def __getitem__(self, idx):
image_file = self.image_files[idx][0]
if self.dataset == 'CUB':
split_idx = 6
elif self.dataset == 'SUN':
split_idx = 7
elif self.dataset == 'AWA2':
split_idx = 5
image_file = os.path.join(self.img_dir,
'/'.join(image_file.split('/')[split_idx:]))
image = Image.open(image_file)
if image.mode != 'RGB':
image = image.convert('RGB')
if self.transform:
image = self.transform(image)
return image
def extract_features(config):
img_dir = f'data/{config.dataset}'
file_paths = f'data/xlsa17/data/{config.dataset}/res101.mat'
save_path = f'data/{config.dataset}/feature_map_ResNet_101_{config.dataset}.hdf5'
attribute_path = f'w2v/{config.dataset}_attribute.pkl'
# region feature extractor
resnet101 = models.resnet101(pretrained=True).to(config.device)
resnet101 = nn.Sequential(*list(resnet101.children())[:-2]).eval()
data_transforms = transforms.Compose([
transforms.Resize(448),
transforms.CenterCrop(448),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
Dataset = CustomedDataset(config.dataset, img_dir, file_paths, data_transforms)
dataset_loader = torch.utils.data.DataLoader(Dataset,
batch_size=config.batch_size,
shuffle=False,
num_workers=config.nun_workers)
with torch.no_grad():
all_features = []
for _, imgs in enumerate(dataset_loader):
imgs = imgs.to(config.device)
features = resnet101(imgs)
all_features.append(features.cpu().numpy())
all_features = np.concatenate(all_features, axis=0)
# get remaining metadata
matcontent = Dataset.matcontent
labels = matcontent['labels'].astype(int).squeeze() - 1
split_path = os.path.join(f'data/xlsa17/data/{config.dataset}/att_splits.mat')
matcontent = sio.loadmat(split_path)
trainval_loc = matcontent['trainval_loc'].squeeze() - 1
# train_loc = matcontent['train_loc'].squeeze() - 1
# val_unseen_loc = matcontent['val_loc'].squeeze() - 1
test_seen_loc = matcontent['test_seen_loc'].squeeze() - 1
test_unseen_loc = matcontent['test_unseen_loc'].squeeze() - 1
att = matcontent['att'].T
original_att = matcontent['original_att'].T
# construct attribute w2v
with open(attribute_path,'rb') as f:
w2v_att = pickle.load(f)
if config.dataset == 'CUB':
assert w2v_att.shape == (312,300)
elif config.dataset == 'SUN':
assert w2v_att.shape == (102,300)
elif config.dataset == 'AWA2':
assert w2v_att.shape == (85,300)
compression = 'gzip' if config.compression else None
f = h5py.File(save_path, 'w')
f.create_dataset('feature_map', data=all_features,compression=compression)
f.create_dataset('labels', data=labels,compression=compression)
f.create_dataset('trainval_loc', data=trainval_loc,compression=compression)
# f.create_dataset('train_loc', data=train_loc,compression=compression)
# f.create_dataset('val_unseen_loc', data=val_unseen_loc,compression=compression)
f.create_dataset('test_seen_loc', data=test_seen_loc,compression=compression)
f.create_dataset('test_unseen_loc', data=test_unseen_loc,compression=compression)
f.create_dataset('att', data=att,compression=compression)
f.create_dataset('original_att', data=original_att,compression=compression)
f.create_dataset('w2v_att', data=w2v_att,compression=compression)
f.close()
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', '-d', type=str, default='AWA2')
parser.add_argument('--compression', '-c', action='store_true', default=False)
parser.add_argument('--batch_size', '-b', type=int, default=200)
parser.add_argument('--device', '-g', type=str, default='cuda:0')
parser.add_argument('--nun_workers', '-n', type=int, default='16')
config = parser.parse_args()
extract_features(config)