-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathgenerate_tsv.py
455 lines (387 loc) · 16.9 KB
/
generate_tsv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
#!/usr/bin/env python
"""Generate bottom-up attention features as a tsv file. Can use cuda and multiple GPUs.
Modify the load_image_ids script as necessary for your data location. """
# Example:
# python generate_tsv.py --net res101 --dataset vg --out test.csv --cuda
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import _init_paths
import os
import sys
import numpy as np
import argparse
import pprint
import pdb
import time
import cv2
import csv
import torch
import base64
from utils.timer import Timer
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as dset
# from scipy.misc import imread
from imageio import imread
from roi_data_layer.roidb import combined_roidb
from roi_data_layer.roibatchLoader import roibatchLoader
from model.utils.config import cfg, cfg_from_file, cfg_from_list, get_output_dir
from model.rpn.bbox_transform import clip_boxes
# from model.nms.nms_wrapper import nms
from model.roi_layers import nms
from model.rpn.bbox_transform import bbox_transform_inv
from model.utils.net_utils import save_net, load_net, vis_detections
from model.utils.blob import im_list_to_blob
from model.faster_rcnn.vgg16 import vgg16
from model.faster_rcnn.resnet import resnet
import pdb
try:
xrange # Python 2
except NameError:
xrange = range # Python 3
csv.field_size_limit(sys.maxsize)
FIELDNAMES = ['image_id', 'image_w','image_h','num_boxes', 'boxes', 'features']
# Settings for the number of features per image. To re-create pretrained features with 36 features
# per image, set both values to 36.
MIN_BOXES = 36
MAX_BOXES = 36
# MIN_BOXES = 10
# MAX_BOXES = 100
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Generate bbox output from a Fast R-CNN network')
parser.add_argument('--dataset', dest='dataset',
help='training dataset',
default='vg', type=str)
parser.add_argument('--net', dest='net',
help='vgg16, res50, res101, res152',
default='res101', type=str)
parser.add_argument('--load_dir', dest='load_dir',
help='directory to load models',
default="models")
parser.add_argument('--cuda', dest='cuda',
help='whether use CUDA',
action='store_true')
parser.add_argument('--mGPUs', dest='mGPUs',
help='whether use multiple GPUs',
action='store_true')
parser.add_argument('--image_dir', dest='image_dir',
help='directory to load images',
default="images")
parser.add_argument('--classes_dir', dest='classes_dir',
help='directory to load object classes for classification',
default="data/genome/1600-400-20")
parser.add_argument('--out', dest='outfile',
help='output filepath',
default=None, type=str)
parser.add_argument('--cfg', dest='cfg_file',
help='optional config file',
default='cfgs/res101.yml', type=str)
parser.add_argument('--set', dest='set_cfgs',
help='set config keys', default=None,
nargs=argparse.REMAINDER)
parser.add_argument('--cag', dest='class_agnostic',
help='whether perform class_agnostic bbox regression',
action='store_true')
parser.add_argument('--split', dest='data_split',
help='dataset to use',
default='karpathy_train', type=str)
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
args = parser.parse_args()
return args
lr = cfg.TRAIN.LEARNING_RATE
momentum = cfg.TRAIN.MOMENTUM
weight_decay = cfg.TRAIN.WEIGHT_DECAY
def _get_image_blob(im):
"""Converts an image into a network input.
Arguments:
im (ndarray): a color image in BGR order
Returns:
blob (ndarray): a data blob holding an image pyramid
im_scale_factors (list): list of image scales (relative to im) used
in the image pyramid
"""
im_orig = im.astype(np.float32, copy=True)
im_orig -= cfg.PIXEL_MEANS
im_shape = im_orig.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
processed_ims = []
im_scale_factors = []
for target_size in cfg.TEST.SCALES:
im_scale = float(target_size) / float(im_size_min)
# Prevent the biggest axis from being more than MAX_SIZE
if np.round(im_scale * im_size_max) > cfg.TEST.MAX_SIZE:
im_scale = float(cfg.TEST.MAX_SIZE) / float(im_size_max)
im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale,
interpolation=cv2.INTER_LINEAR)
im_scale_factors.append(im_scale)
processed_ims.append(im)
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, np.array(im_scale_factors)
#build [image_path, image_id] for dataset, and you can create your own
def load_image_ids(split_name):
''' Load a list of (path,image_id tuples). Modify this to suit your data locations. '''
split = []
if split_name == 'coco_test2014':
with open('/data/coco/annotations/image_info_test2014.json') as f:
data = json.load(f)
for item in data['images']:
image_id = int(item['id'])
filepath = os.path.join('/data/test2014/', item['file_name'])
split.append((filepath,image_id))
elif split_name == 'coco_test2015':
with open('/data/coco/annotations/image_info_test2015.json') as f:
data = json.load(f)
for item in data['images']:
image_id = int(item['id'])
filepath = os.path.join('/data/test2015/', item['file_name'])
split.append((filepath,image_id))
elif split_name == 'genome':
with open('/data/visualgenome/image_data.json') as f:
for item in json.load(f):
image_id = int(item['image_id'])
filepath = os.path.join('/data/visualgenome/', item['url'].split('rak248/')[-1])
split.append((filepath,image_id))
else:
print ('Unknown split')
return split
def get_detections_from_im(fasterRCNN, classes, im_file, image_id, args, conf_thresh=0.2):
"""obtain the image_info for each image,
im_file: the path of the image
return: dict of {'image_id', 'image_h', 'image_w', 'num_boxes', 'boxes', 'features'}
boxes: the coordinate of each box
"""
# initilize the tensor holder here.
im_data = torch.FloatTensor(1)
im_info = torch.FloatTensor(1)
num_boxes = torch.LongTensor(1)
gt_boxes = torch.FloatTensor(1)
# ship to cuda
if args.cuda > 0:
im_data = im_data.cuda()
im_info = im_info.cuda()
num_boxes = num_boxes.cuda()
gt_boxes = gt_boxes.cuda()
# make variable
with torch.no_grad():
im_data = Variable(im_data)
im_info = Variable(im_info)
num_boxes = Variable(num_boxes)
gt_boxes = Variable(gt_boxes)
if args.cuda > 0:
cfg.CUDA = True
if args.cuda > 0:
fasterRCNN.cuda()
fasterRCNN.eval()
#load images
# im = cv2.imread(im_file)
im_in = np.array(imread(im_file))
if len(im_in.shape) == 2:
im_in = im_in[:,:,np.newaxis]
im_in = np.concatenate((im_in,im_in,im_in), axis=2)
# rgb -> bgr
im = im_in[:,:,::-1]
vis = True
blobs, im_scales = _get_image_blob(im)
assert len(im_scales) == 1, "Only single-image batch implemented"
im_blob = blobs
im_info_np = np.array([[im_blob.shape[1], im_blob.shape[2], im_scales[0]]], dtype=np.float32)
im_data_pt = torch.from_numpy(im_blob)
im_data_pt = im_data_pt.permute(0, 3, 1, 2)
im_info_pt = torch.from_numpy(im_info_np)
with torch.no_grad():
im_data.resize_(im_data_pt.size()).copy_(im_data_pt)
im_info.resize_(im_info_pt.size()).copy_(im_info_pt)
gt_boxes.resize_(1, 1, 5).zero_()
num_boxes.resize_(1).zero_()
# pdb.set_trace()
det_tic = time.time()
# the region features[box_num * 2048] are required.
rois, cls_prob, bbox_pred, \
rpn_loss_cls, rpn_loss_box, \
RCNN_loss_cls, RCNN_loss_bbox, \
rois_label, pooled_feat = fasterRCNN(im_data, im_info, gt_boxes, num_boxes, pool_feat = True)
scores = cls_prob.data
boxes = rois.data[:, :, 1:5]
if cfg.TEST.BBOX_REG:
# Apply bounding-box regression deltas
box_deltas = bbox_pred.data
if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
# Optionally normalize targets by a precomputed mean and stdev
if args.class_agnostic:
if args.cuda > 0:
box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS).cuda() \
+ torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS).cuda()
else:
box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS) \
+ torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS)
box_deltas = box_deltas.view(1, -1, 4)
else:
if args.cuda > 0:
box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS).cuda() \
+ torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS).cuda()
else:
box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS) \
+ torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS)
box_deltas = box_deltas.view(1, -1, 4 * len(classes))
pred_boxes = bbox_transform_inv(boxes, box_deltas, 1)
pred_boxes = clip_boxes(pred_boxes, im_info.data, 1)
else:
# Simply repeat the boxes, once for each class
pred_boxes = np.tile(boxes, (1, scores.shape[1]))
pred_boxes /= im_scales[0]
scores = scores.squeeze()
pred_boxes = pred_boxes.squeeze()
det_toc = time.time()
detect_time = det_toc - det_tic
misc_tic = time.time()
max_conf = torch.zeros((pred_boxes.shape[0]))
if args.cuda > 0:
max_conf = max_conf.cuda()
if vis:
im2show = np.copy(im)
for j in xrange(1, len(classes)):
inds = torch.nonzero(scores[:,j]>conf_thresh).view(-1)
# if there is det
if inds.numel() > 0:
cls_scores = scores[:,j][inds]
_, order = torch.sort(cls_scores, 0, True)
if args.class_agnostic:
cls_boxes = pred_boxes[inds, :]
else:
cls_boxes = pred_boxes[inds][:, j * 4:(j + 1) * 4]
cls_dets = torch.cat((cls_boxes, cls_scores.unsqueeze(1)), 1)
# cls_dets = torch.cat((cls_boxes, cls_scores), 1)
cls_dets = cls_dets[order]
# keep = nms(cls_dets, cfg.TEST.NMS, force_cpu=not cfg.USE_GPU_NMS)
keep = nms(cls_boxes[order, :], cls_scores[order], cfg.TEST.NMS)
cls_dets = cls_dets[keep.view(-1).long()]
index = inds[order[keep]]
max_conf[index] = torch.where(scores[index, j] > max_conf[index], scores[index, j], max_conf[index])
if vis:
im2show = vis_detections(im2show, classes[j], cls_dets.cpu().numpy(), 0.5)
if args.cuda > 0:
keep_boxes = torch.where(max_conf >= conf_thresh, max_conf, torch.tensor(0.0).cuda())
else:
keep_boxes = torch.where(max_conf >= conf_thresh, max_conf, torch.tensor(0.0))
keep_boxes = torch.squeeze(torch.nonzero(keep_boxes))
if len(keep_boxes) < MIN_BOXES:
keep_boxes = torch.argsort(max_conf, descending = True)[:MIN_BOXES]
elif len(keep_boxes) > MAX_BOXES:
keep_boxes = torch.argsort(max_conf, descending = True)[:MAX_BOXES]
objects = torch.argmax(scores[keep_boxes][:,1:], dim=1)
box_dets = np.zeros((len(keep_boxes), 4))
boxes = pred_boxes[keep_boxes]
for i in range(len(keep_boxes)):
kind = objects[i]+1
bbox = boxes[i, kind * 4: (kind + 1) * 4]
box_dets[i] = np.array(bbox.cpu())
return {
'image_id': image_id,
'image_h': np.size(im, 0),
'image_w': np.size(im, 1),
'num_boxes': len(keep_boxes),
'boxes': base64.b64encode(box_dets),
'features': base64.b64encode((pooled_feat[keep_boxes].cpu()).detach().numpy())
}
def load_model(args):
# set cfg according to the dataset used to train the pre-trained model
if args.dataset == "pascal_voc":
args.set_cfgs = ['ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]']
elif args.dataset == "pascal_voc_0712":
args.set_cfgs = ['ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]']
elif args.dataset == "coco":
args.set_cfgs = ['ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]']
elif args.dataset == "imagenet":
args.set_cfgs = ['ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]']
elif args.dataset == "vg":
args.set_cfgs = ['ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]']
if args.cfg_file is not None:
cfg_from_file(args.cfg_file)
if args.set_cfgs is not None:
cfg_from_list(args.set_cfgs)
cfg.USE_GPU_NMS = args.cuda
print('Using config:')
pprint.pprint(cfg)
np.random.seed(cfg.RNG_SEED)
# Load classes
classes = ['__background__']
with open(os.path.join(args.classes_dir, 'objects_vocab.txt')) as f:
for object in f.readlines():
classes.append(object.split(',')[0].lower().strip())
if not os.path.exists(args.load_dir):
raise Exception('There is no input directory for loading network from ' + args.load_dir)
load_name = os.path.join(args.load_dir, 'faster_rcnn_{}_{}.pth'.format(args.net, args.dataset))
# initilize the network here. the network used to train the pre-trained model
if args.net == 'vgg16':
fasterRCNN = vgg16(classes, pretrained=False, class_agnostic=args.class_agnostic)
elif args.net == 'res101':
fasterRCNN = resnet(classes, 101, pretrained=False, class_agnostic=args.class_agnostic)
elif args.net == 'res50':
fasterRCNN = resnet(classes, 50, pretrained=False, class_agnostic=args.class_agnostic)
elif args.net == 'res152':
fasterRCNN = resnet(classes, 152, pretrained=False, class_agnostic=args.class_agnostic)
else:
print("network is not defined")
pdb.set_trace()
fasterRCNN.create_architecture()
print("load checkpoint %s" % (load_name))
if args.cuda > 0:
checkpoint = torch.load(load_name)
else:
checkpoint = torch.load(load_name, map_location=(lambda storage, loc: storage))
fasterRCNN.load_state_dict(checkpoint['model'])
if 'pooling_mode' in checkpoint.keys():
cfg.POOLING_MODE = checkpoint['pooling_mode']
print('load model successfully!')
print("load model %s" % (load_name))
return classes, fasterRCNN
def generate_tsv(outfile, image_ids, args):
# First check if file exists, and if it is complete
# image_ids: [image_path, image_id]
wanted_ids = set([int(image_id[1]) for image_id in image_ids])
found_ids = set()
if os.path.exists(outfile):
with open(outfile) as tsvfile:
reader = csv.DictReader(tsvfile, delimiter='\t', fieldnames = FIELDNAMES)
for item in reader:
found_ids.add(int(item['image_id']))
missing = wanted_ids - found_ids
if len(missing) == 0:
print ('Already completed {:d}'.format(len(image_ids)))
else:
print ('Missing {:d}/{:d}'.format(len(missing), len(image_ids)))
if len(missing) > 0:
classes, fasterRCNN = load_model(args)
with open(outfile, 'a+') as tsvfile:
writer = csv.DictWriter(tsvfile, delimiter = '\t', fieldnames = FIELDNAMES)
_t = {'misc' : Timer()}
count = 0
for im_file,image_id in image_ids:
if int(image_id) in missing:
_t['misc'].tic()
# print (type(get_detections_from_im(fasterRCNN, classes, im_file, image_id, args)))
# print (get_detections_from_im(fasterRCNN, classes, im_file, image_id, args))
writer.writerow(get_detections_from_im(fasterRCNN, classes, im_file, image_id, args))
_t['misc'].toc()
if (count % 100) == 0:
print ('{:d}/{:d} {:.3f}s (projected finish: {:.2f} hours)' \
.format(count+1, len(missing), _t['misc'].average_time,
_t['misc'].average_time*(len(missing)-count)/3600))
count += 1
if __name__ == '__main__':
args = parse_args()
print('Called with args:')
print(args)
# image_ids = load_image_ids(args.data_split)
image_ids = [['images/img1.jpg', 0], ['images/img2.jpg', 1]]
generate_tsv(args.outfile, image_ids, args)