-
Notifications
You must be signed in to change notification settings - Fork 1
/
countTimeDist.py
63 lines (49 loc) · 1.41 KB
/
countTimeDist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import utilities
import random_generator
import numpy as np
import os
from sklearn.preprocessing import normalize
import random
import matplotlib.pyplot as plt
import pickle
import features
if __name__ == '__main__':
currentPath = os.getcwd()
oldpath = "../../alllogs/"
files = utilities.get_all_files(oldpath)
current_path = os.path.join(currentPath, oldpath)
count_list = []
time_count_list = np.array([0]*17)
total_time = 0
daycount = 14
for afile in files:
if daycount == 0:
break
daycount -= 1
print afile
for individual_files in os.listdir(os.path.join(current_path, afile)):
# print individual_files
with open(os.path.join(os.path.join(current_path, afile), individual_files), 'r') as f:
content = f.readlines()
count = len(content)
# print count
# if count > 300:
# print count, content
# print "\n\n\n"
# raw_input()
count_list.append(count)
for line in content:
val = features.timeStartFeature(line)
if val != None:
ip = np.array(val)
# print ip
time_count_list = np.add(time_count_list, ip)
total_time += 1
# print count_list
# print sum(count_list) / len(count_list)
# print max(count_list), min(count_list)
print time_count_list
print time_count_list, total_time
total_time =float(total_time)
frequencyTime = time_count_list/total_time
pickle.dump(frequencyTime, open("TimeBinaryFrequency.p", "wb"))