forked from google/autofdo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
llvm_propeller_node_chain_assembly.h
300 lines (256 loc) · 11.8 KB
/
llvm_propeller_node_chain_assembly.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#ifndef AUTOFDOLLVM_PROPELLER_NODE_CHAIN_ASSEMBLY_H_
#define AUTOFDOLLVM_PROPELLER_NODE_CHAIN_ASSEMBLY_H_
#include <algorithm>
#include <memory>
#include <optional>
#include <utility>
#include <vector>
#include "llvm_propeller_cfg.h"
#include "llvm_propeller_chain_merge_order.h"
#include "llvm_propeller_code_layout_scorer.h"
#include "llvm_propeller_node_chain.h"
#include "third_party/abseil/absl/functional/function_ref.h"
#include "third_party/abseil/absl/status/statusor.h"
namespace devtools_crosstool_autofdo {
// Represents a pair of NodeChains <`split_chain`, `unsplit_chain`> associated
// with a `NodeChainAssembly`.
struct NodeChainPair {
NodeChain *split_chain = nullptr;
NodeChain *unsplit_chain = nullptr;
friend bool operator==(const NodeChainPair &lhs, const NodeChainPair &rhs);
template <typename H>
friend H AbslHashValue(H h, const NodeChainPair &m);
};
inline bool operator==(const NodeChainPair &lhs, const NodeChainPair &rhs) {
return lhs.split_chain == rhs.split_chain &&
lhs.unsplit_chain == rhs.unsplit_chain;
}
template <typename H>
H AbslHashValue(H h, const NodeChainPair &m) {
return H::combine(std::move(h), m.split_chain, m.unsplit_chain);
}
// This struct defines a slices of a node chain, specified by iterators to the
// beginning and end of the slice.
class NodeChainSlice {
public:
// Constructor for building a chain slice from a given chain and the two
// endpoints of the chain. `chain` must outlive the NodeChainSlice.
// Additionally, any changes to the bundles of the chain would invalidate the
// slice.
explicit NodeChainSlice(NodeChain &chain, int begin, int end)
: chain_(&chain), begin_index_(begin), end_index_(end) {
CHECK_LE(begin, end);
CHECK_LE(begin, chain.node_bundles().size());
CHECK_LE(end, chain.node_bundles().size());
}
// Constructor for building a chain slice from a node chain containing all
// of its nodes.
explicit NodeChainSlice(NodeChain &chain)
: chain_(&chain),
begin_index_(0),
end_index_(chain.node_bundles().size()) {}
// NodeChainSlice is copyable.
NodeChainSlice(const NodeChainSlice &) = default;
NodeChainSlice &operator=(const NodeChainSlice &) = default;
NodeChainSlice(NodeChainSlice &&) = default;
NodeChainSlice &operator=(NodeChainSlice &&) = default;
NodeChain &chain() const { return *chain_; }
// Iterator to the beginning of the slice.
std::vector<std::unique_ptr<CFGNodeBundle>>::iterator begin_pos() const {
return chain_->mutable_node_bundles().begin() + begin_index_;
}
// Iterator to the end of the slice.
std::vector<std::unique_ptr<CFGNodeBundle>>::iterator end_pos() const {
return chain_->mutable_node_bundles().begin() + end_index_;
}
// The binary-size offsets corresponding to the two end-points of the slice.
int begin_offset() const {
return (*begin_pos())->chain_mapping().chain_offset;
}
int end_offset() const {
return end_index_ == chain_->node_bundles().size()
? chain_->size()
: (*end_pos())->chain_mapping().chain_offset;
}
// (Binary) size of this slice
int size() const { return end_offset() - begin_offset(); }
bool empty() const { return begin_index_ == end_index_; }
private:
// The chain from which this slice has been constructed.
NodeChain *chain_;
// The endpoints of the slice in the corresponding chain. `begin_index_` is
// the first index included in the slice. `end_index_` is one after the last
// included index.
int begin_index_, end_index_;
};
// This class abstracts the strategy for assembling two chains together with one
// of the chains potentially being split into two chains. This strategy is
// specified by the following fields:
// 1- The two chains (split_chain and unsplit_chain),
// 2- The split position in the split_chain (if split_chain must be split).
// 3- The merge order for concatenating the three/two resulting chain slices.
//
// For ease of implementation, we form two or three 'NodeChainSlice's from these
// fields and use them to query and traverse the NodeChainAssembly.
class NodeChainAssembly {
public:
// This struct represents options for building a `NodeChainAssembly` by
// `NodeChainAssembly::BuildNodeChainAssembly`.
struct NodeChainAssemblyBuildingOptions {
// The merge order for concatenating the three/two resulting chain slices.
ChainMergeOrder merge_order = ChainMergeOrder::kSU;
// The split position in the split_chain (if split_chain must be split).
std::optional<int> slice_pos = std::nullopt;
// Whether `NodeChainAssembly::BuildNodeChainAssembly` should return error
// if the constructed assembly's score gain is zero.
bool error_on_zero_score_gain = true;
};
// Comparator for two NodeChainAssemblies. It compares score_gain and break
// ties consistently.
struct NodeChainAssemblyComparator {
bool operator()(const NodeChainAssembly &lhs,
const NodeChainAssembly &rhs) const;
};
// Builds a NodeChainAssembly which merges `split_chain` and `unsplit_chain`
// according to `options`. Both chains must outlive the created
// NodeChainAssembly. `options.slice_pos` must be `std::nullopt` iff
// `options.merge_order == kSU`. Returns error under these conditions:
// 1- The assembly places a function entry node in the middle (in
// non-inter-function-reordering mode).
// 2- `options.slice_pos` is out of bounds (less than 0 or larger than
// `split_chain.node_bundles.size() - 1`).
// 3- The constructed assembly has a negative score gain or it has zero
// score gain and `options.error_on_zero_score_gain == true`.
static absl::StatusOr<NodeChainAssembly> BuildNodeChainAssembly(
const NodeToBundleMapper &bundle_mapper,
const PropellerCodeLayoutScorer &scorer, NodeChain &split_chain,
NodeChain &unsplit_chain, NodeChainAssemblyBuildingOptions options);
// NodeChainAssembly is copyable and moveable.
NodeChainAssembly(const NodeChainAssembly &) = default;
NodeChainAssembly &operator=(const NodeChainAssembly &) = default;
NodeChainAssembly(NodeChainAssembly &&) = default;
NodeChainAssembly &operator=(NodeChainAssembly &&) = default;
ChainMergeOrder merge_order() const { return merge_order_; }
std::optional<int> slice_pos() const { return slice_pos_; }
NodeChainPair chain_pair() const { return chain_pair_; }
NodeChain &split_chain() const { return *chain_pair_.split_chain; }
NodeChain &unsplit_chain() const { return *chain_pair_.unsplit_chain; }
const std::vector<NodeChainSlice> &slices() const { return slices_; }
// Returns whether this assembly actually splits the split_chain.
bool splits() const { return merge_order_ != ChainMergeOrder::kSU; }
double score_gain() const { return score_gain_; }
// Iterates over all node bundles in the resulting assembled chain while
// applying a given function to every node bundle.
void VisitEachNodeBundleInAssemblyOrder(
absl::FunctionRef<void(const CFGNodeBundle &bundle)> func) const {
for (const NodeChainSlice &slice : slices_) {
for (auto it = slice.begin_pos(); it != slice.end_pos(); ++it) func(**it);
}
}
void ConsumeEachNodeBundleInAssemblyOrder(
absl::FunctionRef<void(std::unique_ptr<CFGNodeBundle> bundle)> func) && {
for (const NodeChainSlice &slice : slices_) {
for (auto it = slice.begin_pos(); it != slice.end_pos(); ++it)
func(std::move(*it));
}
}
// Gets the first node in the resulting assembled chain.
const CFGNode *GetFirstNode() const {
return (*slices_.front().begin_pos())->nodes().front();
}
// Finds the NodeChainSlice in this NodeChainAssembly which contains the given
// node. If the node is not contained in this NodeChainAssembly, then return
// a std::nullopt. Otherwise, return the corresponding index for the slice.
std::optional<int> FindSliceIndex(
const CFGNode *node,
const NodeToBundleMapper::BundleMappingEntry &bundle_mapping) const;
private:
explicit NodeChainAssembly(const NodeToBundleMapper &bundle_mapper,
const PropellerCodeLayoutScorer &scorer,
NodeChain &split_chain, NodeChain &unsplit_chain,
ChainMergeOrder merge_order,
std::optional<int> slice_pos)
: chain_pair_{.split_chain = &split_chain,
.unsplit_chain = &unsplit_chain},
merge_order_(merge_order),
slice_pos_(slice_pos),
slices_(ConstructSlices()),
score_gain_(ComputeScoreGain(bundle_mapper, scorer)) {}
// Index of the unsplit_chain in the slices_ vector.
int unsplit_chain_slice_index() const {
switch (merge_order_) {
case ChainMergeOrder::kSU:
return 1;
case ChainMergeOrder::kS2S1U:
return 2;
case ChainMergeOrder::kS1US2:
return 1;
case ChainMergeOrder::kUS2S1:
return 0;
case ChainMergeOrder::kS2US1:
return 1;
}
LOG(FATAL) << "Invalid merge order.";
}
// Indices of the split_chain slices in the slices_ vector.
std::vector<int> split_chain_slice_indexes() const {
switch (merge_order_) {
case ChainMergeOrder::kSU:
return {0};
case ChainMergeOrder::kS2S1U:
return {1, 0};
case ChainMergeOrder::kS1US2:
return {0, 2};
case ChainMergeOrder::kUS2S1:
return {2, 1};
case ChainMergeOrder::kS2US1:
return {0, 2};
}
LOG(FATAL) << "Invalid merge_order";
}
// Constructs and returns the node chain slices that are characterized by the
// specified slice position and merge order.
std::vector<NodeChainSlice> ConstructSlices() const;
// Returns the gain in Ext-TSP score if this assembly is applied. May return 0
// if the actual score gain is negative.
double ComputeScoreGain(const NodeToBundleMapper &bundle_mapper,
const PropellerCodeLayoutScorer &scorer) const;
// Returns the total score contribution of edges running from `from_chain` to
// `to_chain` for this assembly.
double ComputeInterChainScore(const NodeToBundleMapper &bundle_mapper,
const PropellerCodeLayoutScorer &scorer,
const NodeChain &from_chain,
const NodeChain &to_chain) const;
// Returns the total score gain from `split_chain()`'s intra-chain edges for
// this assembly. This is more efficient than calling
// `ComputeInterChainScore(scorer, chain, chain)` since it only computes the
// delta in score from edges which run between different slices of
// `split_chain()` (i.e., their source-to-sink distance has changed by
// splitting).
double ComputeSplitChainScoreGain(
const NodeToBundleMapper &bundle_mapper,
const PropellerCodeLayoutScorer &scorer) const;
// Returns the score contribution of a single edge for this assembly.
double ComputeEdgeScore(const NodeToBundleMapper &bundle_mapper,
const PropellerCodeLayoutScorer &scorer,
const CFGEdge &edge) const;
// The two chains in the assembly.
NodeChainPair chain_pair_;
// The merge order of the slices
ChainMergeOrder merge_order_;
// The splitting position in split_chain; split_chain is split into
// s1[0, slice_pos_ - 1] and s2[slice_pos_, split_chain.size()-1]
// This will be empty for the kSU merge order.
std::optional<int> slice_pos_;
// The three chain slices formed from the fields above.
std::vector<NodeChainSlice> slices_;
// The gain in ExtTSP score achieved by this NodeChainAssembly once it
// is accordingly applied to the two chains.
// This is equal to
// [assembled_chain]->score - split_chain->score - unsplit_chain->score".
// This value is computed by calling ComputeScoreGain upon construction and is
// cached here for efficiency.
double score_gain_;
};
} // namespace devtools_crosstool_autofdo
#endif // AUTOFDOLLVM_PROPELLER_NODE_CHAIN_ASSEMBLY_H_