-
Notifications
You must be signed in to change notification settings - Fork 29
/
train.py
163 lines (135 loc) · 7.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import argparse
import collections
import sys
import requests
import socket
import torch
import mlflow
import mlflow.pytorch
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.model as module_arch
from parse_config import ConfigParser
from trainer import Trainer
from collections import OrderedDict
import random
def log_params(conf: OrderedDict, parent_key: str = None):
for key, value in conf.items():
if parent_key is not None:
combined_key = f'{parent_key}-{key}'
else:
combined_key = key
if not isinstance(value, OrderedDict):
mlflow.log_param(combined_key, value)
else:
log_params(value, combined_key)
def main(config: ConfigParser):
logger = config.get_logger('train')
logger.info(config.config)
# setup data_loader instances
data_loader1 = getattr(module_data, config['data_loader']['type'])(
config['data_loader']['args']['data_dir'],
batch_size= config['data_loader']['args']['batch_size'],
shuffle=config['data_loader']['args']['shuffle'],
validation_split=config['data_loader']['args']['validation_split'],
num_batches=config['data_loader']['args']['num_batches'],
training=True,
num_workers=config['data_loader']['args']['num_workers'],
pin_memory=config['data_loader']['args']['pin_memory']
)
data_loader2 = getattr(module_data, config['data_loader']['type'])(
config['data_loader']['args']['data_dir'],
batch_size= config['data_loader']['args']['batch_size2'],
shuffle=config['data_loader']['args']['shuffle'],
validation_split=config['data_loader']['args']['validation_split'],
num_batches=config['data_loader']['args']['num_batches'],
training=True,
num_workers=config['data_loader']['args']['num_workers'],
pin_memory=config['data_loader']['args']['pin_memory']
)
valid_data_loader = data_loader1.split_validation()
test_data_loader = getattr(module_data, config['data_loader']['type'])(
config['data_loader']['args']['data_dir'],
batch_size=128,
shuffle=False,
validation_split=0.0,
training=False,
num_workers=2
).split_validation()
# build model architecture
model1 = config.initialize('arch1', module_arch)
model_ema1 = config.initialize('arch1', module_arch)
model_ema1_copy = config.initialize('arch1', module_arch)
model2 = config.initialize('arch2', module_arch)
model_ema2 = config.initialize('arch2', module_arch)
model_ema2_copy = config.initialize('arch2', module_arch)
# get function handles of loss and metrics
device_id = list(range(min(torch.cuda.device_count(), config['n_gpu'])))
if hasattr(data_loader1.dataset, 'num_raw_example') and hasattr(data_loader2.dataset, 'num_raw_example'):
num_examp1 = data_loader1.dataset.num_raw_example
num_examp2 = data_loader2.dataset.num_raw_example
else:
num_examp1 = len(data_loader1.dataset)
num_examp2 = len(data_loader2.dataset)
train_loss1 = getattr(module_loss, config['train_loss']['type'])(num_examp=num_examp1, num_classes=config['num_classes'],
device = 'cuda:'+ str(device_id[0]), config = config.config, beta=config['train_loss']['args']['beta'])
train_loss2 = getattr(module_loss, config['train_loss']['type'])(num_examp=num_examp2, num_classes=config['num_classes'],
device = 'cuda:'+str(device_id[-1]), config = config.config, beta=config['train_loss']['args']['beta'])
val_loss = getattr(module_loss, config['val_loss'])
metrics = [getattr(module_metric, met) for met in config['metrics']]
# build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
trainable_params1 = filter(lambda p: p.requires_grad, model1.parameters())
trainable_params2 = filter(lambda p: p.requires_grad, model2.parameters())
optimizer1 = config.initialize('optimizer1', torch.optim, [{'params': trainable_params1}])
optimizer2 = config.initialize('optimizer2', torch.optim, [{'params': trainable_params2}])
lr_scheduler1 = config.initialize('lr_scheduler', torch.optim.lr_scheduler, optimizer1)
lr_scheduler2 = config.initialize('lr_scheduler', torch.optim.lr_scheduler, optimizer2)
trainer = Trainer(model1, model2, model_ema1, model_ema2, train_loss1, train_loss2,
metrics,
optimizer1, optimizer2,
config=config,
data_loader1=data_loader1,
data_loader2=data_loader2,
valid_data_loader=valid_data_loader,
test_data_loader=test_data_loader,
lr_scheduler1=lr_scheduler1,
lr_scheduler2=lr_scheduler2,
val_criterion=val_loss,
model_ema1_copy = model_ema1_copy,
model_ema2_copy = model_ema2_copy)
trainer.train()
logger = config.get_logger('trainer', config['trainer']['verbosity'])
cfg_trainer = config['trainer']
if __name__ == '__main__':
args = argparse.ArgumentParser(description='PyTorch Template')
args.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
# custom cli options to modify configuration from default values given in json file.
CustomArgs = collections.namedtuple('CustomArgs', 'flags type target')
options = [
CustomArgs(['--lr', '--learning_rate'], type=float, target=('optimizer', 'args', 'lr')),
CustomArgs(['--bs', '--batch_size'], type=int, target=('data_loader', 'args', 'batch_size')),
CustomArgs(['--beta', '--beta'], type=float, target=('train_loss', 'args', 'beta')),
CustomArgs(['--lambda', '--lambda'], type=float, target=('train_loss', 'args', 'lambda')),
CustomArgs(['--percent', '--percent'], type=float, target=('trainer', 'percent')),
CustomArgs(['--asym', '--asym'], type=bool, target=('trainer', 'asym')),
CustomArgs(['--name', '--exp_name'], type=str, target=('name',)),
CustomArgs(['--malpha', '--mixup_alpha'], type=float, target=('mixup_alpha',)),
CustomArgs(['--ealpha', '--ema_alpha'], type=float, target=('ema_alpha',)),
CustomArgs(['--nb', '--num_batches'], type=float, target=('data_loader', 'args', 'num_batches')),
CustomArgs(['--warm', '--warmup'], type=int, target=('trainer', 'warmup')),
CustomArgs(['--seed', '--seed'], type=int, target=('seed',)),
CustomArgs(['--wc1', '--weight_decay1'], type=float, target=('optimizer1','weight_decay')),
CustomArgs(['--wc2', '--weight_decay2'], type=float, target=('optimizer2','weight_decay')),
CustomArgs(['--estep', '--ema_step'], type=float, target=('ema_step',)),
]
config = ConfigParser.get_instance(args, options)
random.seed(config['seed'])
torch.manual_seed(config['seed'])
torch.cuda.manual_seed_all(config['seed'])
main(config)