-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel_layers.py
138 lines (117 loc) · 6.8 KB
/
model_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import tensorflow as tf
class Encoder(tf.keras.layers.Layer):
"""
calculate encoded output and hidden state from encoder input and initialized encoder hidden
batch by batch and paragraph by paragraph
input is [batch_sz,max_len_x] encoder hidden is [batch_sz, enc_units]
output is [batch_sz, max_len_x, enc_units]
"""
def __init__(self, enc_units, batch_sz, embedding_matrix):
super(Encoder, self).__init__()
vocab_size, embedding_dim = embedding_matrix.shape[0], embedding_matrix.shape[1]
self.batch_sz = batch_sz
self.enc_units = enc_units // 2
self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim, weights=[embedding_matrix], trainable=False)
self.gru = tf.keras.layers.GRU(self.enc_units, return_sequences=True, return_state=True,
recurrent_initializer='glorot_uniform')
self.bidirectional_gru = tf.keras.layers.Bidirectional(self.gru)
def call(self, x, hidden):
# [batch_sz,max_train_x,embedding_dim]
x = self.embedding(x)
# output is [batch_sz, max_train_x, enc_units] enc_hidden after concat is [batch_sz, enc_units]
output, forward_state, backward_state = self.bidirectional_gru(x, initial_state=[hidden, hidden])
enc_hidden = tf.keras.layers.concatenate([forward_state, backward_state],axis=-1)
return output, enc_hidden
def initialize_hidden_state(self):
return tf.zeros((self.batch_sz, self.enc_units))
class BahdanauAttention(tf.keras.layers.Layer):
"""
calculate attention and coverage from dec_hidden enc_output and prev_coverage
one dec_hidden(word) by one dec_hidden
dec_hidden or query is [batch_sz, enc_unit], enc_output or values is [batch_sz, max_train_x, enc_units],
prev_coverage is [batch_sz, max_len_x, 1]
dec_hidden is initialized as enc_hidden, prev_coverage is initialized as None
output context_vector [batch_sz, enc_units] attention_weights & coverage [batch_sz, max_len_x, 1]
"""
def __init__(self, units):
super(BahdanauAttention, self).__init__()
self.W_h = tf.keras.layers.Dense(units)
self.W_s = tf.keras.layers.Dense(units)
self.W_c = tf.keras.layers.Dense(units)
self.V = tf.keras.layers.Dense(1)
def call(self, dec_hidden, enc_output, enc_pad_mask, use_coverage, prev_coverage):
# prev_coverage [batch_sz, max_len_x, 1]
# 11.07 add enc_pad_mask [batch_sz, max_len_x] to mask attention
# query or dec_hidden [batch_sz, enc_units], values or enc_output [batch_sz, max_len, enc_units]
# hidden_with_time_axis [batch_size, 1, enc_units]
hidden_with_time_axis = tf.expand_dims(dec_hidden, 1)
if use_coverage and prev_coverage is not None:
# self.W_s(values) [batch_sz, max_len, units] self.W_h(hidden_with_time_axis) [batch_sz, 1, units]
# self.W_c(prev_coverage) [batch_sz, max_len, units] score [batch_sz, max_len, 1]
score = self.V(tf.nn.tanh(self.W_s(enc_output) + self.W_h(hidden_with_time_axis) + self.W_c(prev_coverage)))
# attention_weights shape (batch_size, max_len, 1)
mask = tf.cast(enc_pad_mask, dtype=score.dtype)
masked_score = tf.squeeze(score, axis=-1) * mask
masked_score = tf.expand_dims(masked_score, axis=2)
attention_weights = tf.nn.softmax(masked_score, axis=1)
coverage = attention_weights + prev_coverage
else:
# self.W1(values) [batch_sz, max_len, units] self.W2(hidden_with_time_axis): [batch_sz, 1, units]
# score [batch_sz, max_len, 1]
score = self.V(tf.nn.tanh(self.W_s(enc_output) + self.W_h(hidden_with_time_axis)))
mask = tf.cast(enc_pad_mask, dtype=score.dtype)
masked_score = tf.squeeze(score, axis=-1) * mask
masked_score = tf.expand_dims(masked_score, axis=2)
attention_weights = tf.nn.softmax(masked_score, axis=1)
if use_coverage:
coverage = attention_weights
# [batch_sz, max_len, enc_units]
context_vector = attention_weights * enc_output
# [batch_sz, enc_units]
context_vector = tf.reduce_sum(context_vector, axis=1)
return context_vector, attention_weights, coverage
class Decoder(tf.keras.layers.Layer):
"""
calculate output before pointer generator network
input dec_inp [batch_sz, 1], hidden [batch_sz, enc_units], context_vector [batch_sz, enc_units]
output dec_inp_context [batch_sz,1,embedding_dim+enc_units] dec_pred [batch_size,vocab_size] dec_hidden [batch_sz,dec_units]
"""
def __init__(self, dec_units, batch_sz, embedding_matrix):
super(Decoder, self).__init__()
vocab_size, embedding_dim = embedding_matrix.shape[0], embedding_matrix.shape[1]
self.batch_sz = batch_sz
self.dec_units = dec_units
self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim, weights=[embedding_matrix], trainable=False)
self.gru = tf.keras.layers.GRU(self.dec_units, return_sequences=True, return_state=True, recurrent_initializer='glorot_uniform')
self.fc = tf.keras.layers.Dense(vocab_size, activation=tf.keras.activations.softmax)
def call(self, dec_inp, dec_hidden, context_vector):
# context_vector[batch_sz, enc_units]
# dec_hidden [batch_sz, dec_units] NOTE dec_units == enc_units
# dec_inp shape [batch_size, 1, embedding_dim]
dec_inp = self.embedding(dec_inp)
# dec_inp shape [batch_sz, 1, embedding_dim + enc_units]
dec_inp_context = tf.concat([tf.expand_dims(context_vector, 1), dec_inp], axis=-1)
# output [batch_sz, 1, dec_units] state [batch_sz, dec_units]
output, dec_hidden = self.gru(dec_inp_context)
# output shape [batch_size, dec_units]
output = tf.reshape(output, (-1, output.shape[2]))
# print('output deduced by dec_hidden', tf.math.reduce_sum(output-dec_hidden)) they are same!!!
# dec_inp shape [batch_size, vocab_size]
dec_pred = self.fc(output)
return dec_inp_context, dec_pred, dec_hidden
class Pointer(tf.keras.layers.Layer):
"""
calculate Pgen
input context_vector [batch_sz,enc_units] dec_hidden [batch_sz,dec_units] dec_inp_context [batch_sz,1,embedding_dim+enc_units]
output scaler pgen
"""
def __init__(self):
super(Pointer, self).__init__()
self.w_s_reduce = tf.keras.layers.Dense(1)
self.w_i_reduce = tf.keras.layers.Dense(1)
self.w_c_reduce = tf.keras.layers.Dense(1)
def call(self, context_vector, dec_hidden, dec_inp):
# change dec_inp_context to [batch_sz,embedding_dim+enc_units]
dec_inp = tf.squeeze(dec_inp, axis=1)
pgen = tf.nn.sigmoid(self.w_s_reduce(dec_hidden) + self.w_c_reduce(context_vector) + self.w_i_reduce(dec_inp))
return pgen