forked from StanleyZheng-FDU/targeted-black-box-attack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Preproc.py
83 lines (63 loc) · 2.5 KB
/
Preproc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import cv2
import random
import numpy as np
def indicesInverted(data, labelsCoarse, labelsFine):
assert isinstance(data, np.ndarray), 'data must be numpy.ndarray'
assert data.shape[0] == len(labelsCoarse) == len(labelsFine), 'data and labels must match in size'
indicesCoarse = [[] for _ in range(np.max(labelsCoarse)+1)]
indicesFine = [[] for _ in range(np.max(labelsFine)+1)]
for idx in range(data.shape[0]):
labelCoarse = labelsCoarse[idx]
labelFine = labelsFine[idx]
indicesCoarse[labelCoarse].append(idx)
indicesFine[labelFine].append(idx)
return indicesCoarse, indicesFine
def genIndex(size, shuffle=True):
perm = list(range(size))
if shuffle:
random.shuffle(perm)
index = 0
while True:
if index >= size:
index = 0
perm = list(range(size))
if shuffle:
random.shuffle(perm)
yield perm[index]
index += 1
def randomCrop(image, size):
beginX = random.randint(0, image.shape[0]-size[0])
beginY = random.randint(0, image.shape[1]-size[1])
return image[beginX:beginX+size[0], beginY:beginY+size[1], :]
def centerCrop(image, size):
beginX = int((image.shape[0]-size[0]) / 2)
beginY = int((image.shape[1]-size[1]) / 2)
return image[beginX:beginX+size[0], beginY:beginY+size[1], :]
def randomRotate(image, rng=10):
(h, w) = image.shape[0:2]
angle = (random.random() - 0.5) * rng * 2
mat = cv2.getRotationMatrix2D((w/2, h/2), angle, 1.0)
return cv2.warpAffine(image, mat, (w, h))
def randomFlip(image):
flipped = image
if random.random() > 0.5:
flipped = cv2.flip(flipped, 1) # Flipped Horizontally
if random.random() > 0.5:
flipped = cv2.flip(flipped, 0) # Flipped Vertically
return flipped
def randomFlipH(image):
flipped = image
if random.random() > 0.5:
flipped = cv2.flip(flipped, 1) # Flipped Horizontally
return flipped
def randomBrightness(image, rng=10):
b = int((random.random()-0.5) * rng * 2)
return np.uint8(np.clip(np.int32(image) + b, 0, 255))
def randomContrast(image, mini=0.5, maxi=1.5):
a = mini + (maxi-mini) * random.random()
b = 125 * (1 - a)
return np.uint8(np.clip(a * image + b, 0, 255))
def randomShift(image, rng=4):
shiftX = random.randint(-rng, rng)
shiftY = random.randint(-rng, rng)
return np.roll(np.roll(image, shiftX, axis=0), shiftY, axis=1)