-
Notifications
You must be signed in to change notification settings - Fork 0
/
ProjectEuler-018.py
45 lines (37 loc) · 1.42 KB
/
ProjectEuler-018.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
'''By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total
from top to bottom is 23.
3
7 4
2 4 6
8 5 9 3
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle below:
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67,
is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a
clever method! ;o)'''
array = []
for line in open('./ProjectEuler-18.txt').readlines():
numbers = []
values = line.split()
for item in values: numbers.append(int(item))
array.append(numbers)
print(array)
for row in range(len(array)-1, 0, -1): # Work backwards through the table from the last row up to the first
for col in range(0, row): # Work left to right inside each row
array[row-1][col] += max(array[row][col], array[row][col+1])
print(array)