forked from Pravin74/ego_action_recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rgb_lstm.py
210 lines (168 loc) · 7.38 KB
/
rgb_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from __future__ import print_function, division
import shutil
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import torch.utils.data as data
import torch.nn.functional as F
from config import GTEA as DATA
from utils.folder import SequencePreloader, NpySequencePreloader
DEVICE = 1
#Data statistics
mean = DATA.rgb['mean']
std = DATA.rgb['std']
num_classes = DATA.rgb_lstm['num_classes']
class_map = DATA.rgb_lstm['class_map']
#Training parameters
lr = DATA.rgb_lstm['lr']
momentum = DATA.rgb_lstm['momentum']
step_size = DATA.rgb_lstm['step_size']
gamma = DATA.rgb_lstm['gamma']
num_epochs = DATA.rgb_lstm['num_epochs']
batch_size = DATA.rgb_lstm['batch_size']
sequence_length = DATA.rgb_lstm['sequence_length']
data_transforms= DATA.rgb_lstm['data_transforms']
#Directory names
data_dir = DATA.rgb['data_dir']
png_dir = DATA.rgb['png_dir']
weights_dir = DATA.rgb['weights_dir']
features_2048_dir = DATA.rgb_lstm['features_2048_dir']
#csv files
train_csv = DATA.rgb_lstm['train_csv']
test_csv = DATA.rgb_lstm['test_csv']
class ResNet50Bottom(nn.Module):
"""
Model definition.
"""
def __init__(self, original_model):
super(ResNet50Bottom, self).__init__()
self.features = nn.Sequential(*list(original_model.children())[:-2])
self.avg_pool = nn.AvgPool2d(10,1)
def forward(self, x):
x = x.view(-1, 3, 300, 300)
x = self.features(x)
x = self.avg_pool(x)
x = x.view(-1, 2048)
return x
class LSTMNet(nn.Module):
def __init__(self, input_size, hidden_size):
super(LSTMNet, self).__init__()
self.hidden_size = hidden_size
self.rnn = nn.LSTM(input_size, hidden_size, 1, batch_first=True)
self.out = nn.Linear(hidden_size, num_classes)
def forward(self, inp):
x = self.rnn(inp)[0]
outputs = self.out(x)
outputs_mean = Variable(torch.zeros(outputs.size()[0], num_classes)).cuda(DEVICE)
for i in range(outputs.size()[0]):
outputs_mean[i] = outputs[i].mean(dim=0)
return outputs_mean
class Net(nn.Module):
def __init__(self, model_conv, input_size, hidden_size):
super(Net, self).__init__()
self.resnet50Bottom = ResNet50Bottom(model_conv)
self.lstmNet = LSTMNet(input_size, hidden_size)
def forward(self, inp, phase):
if phase == 'train':
features = []
batch_size = inp.size()[0]
sequence_length = inp.size()[1]
inp = inp.view(-1, 3, 300, 300)
for i in range(0, inp.size()[0], 128):
features.append(self.resnet50Bottom(inp[i:i+128]))
feature_sequence = torch.cat(features, dim=0)
feature_sequence = feature_sequence.view(batch_size, sequence_length, 2048)
outputs = self.lstmNet(feature_sequence)
return outputs
else:
outputs = self.lstmNet(inp)
return outputs
def train_model(model, criterion, optimizer, scheduler, num_epochs=2000):
"""
Training model with given criterion, optimizer for num_epochs.
"""
since = time.time()
best_model_wts = model.state_dict()
best_acc = 0.0
train_loss = []
train_acc = []
test_acc = []
test_loss = []
for epoch in range(0,num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
for phase in ['train', 'test']:
if phase == 'train':
scheduler.step()
model.train(True) # Set model to training mode
else:
model.train(False) # Set model to etestuate mode
running_loss = 0.0
running_corrects = 0
for data in dataloaders[phase]:
inputs, labels = data
inputs = Variable(inputs.cuda(DEVICE))
labels = Variable(labels.cuda(DEVICE))
optimizer.zero_grad()
outputs = model(inputs, phase)
_, preds = torch.max(outputs.data, 1)
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.data[0]
running_corrects += torch.sum(preds == labels.data)[0].cpu().numpy()
epoch_loss = running_loss / (dataset_sizes[phase] * 1.0)
epoch_acc = running_corrects / (dataset_sizes[phase] * 1.0)
if phase=='train':
train_loss.append(epoch_loss)
train_acc.append(epoch_acc)
print ('##############################################################')
print ("{} loss = {}, acc = {},".format(phase, epoch_loss, epoch_acc))
else:
test_loss.append(epoch_loss)
test_acc.append(epoch_acc)
print (" {} loss = {}, acc = {},".format(phase, epoch_loss, epoch_acc))
print ('##############################################################')
if phase == 'test' and epoch_acc > best_acc:
best_acc = epoch_acc
print ('saving model.....')
torch.save(model,weights_dir + 'weights_'+ file_name + '_lr_' + str(lr) + '_momentum_' + str(momentum) + '_step_size_' + \
str(step_size) + '_gamma_' + str(gamma) + '_seq_length_' + str(sequence_length) + '_num_classes_' + str(num_classes) + \
'_batch_size_' + str(batch_size) + '.pt')
print()
time_elapsed = time.time() - sinceview(1,-1)
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best test Acc: {:4f}'.format(best_acc))
model = torch.load(weights_dir + 'weights_'+ file_name + '_lr_' + str(lr) + '_momentum_' + str(momentum) + '_step_size_' + \
str(step_size) + '_gamma_' + str(gamma) + '_seq_length_' + str(sequence_length) + '_num_classes_' + str(num_classes) + \
'_batch_size_' + str(batch_size) + '.pt')
return model
#Dataload and generator initialization
sequence_datasets = {'train': SequencePreloader(data_dir + png_dir, data_dir + train_csv, mean, std, [280, 450], [224, 224], 300), \
'test': NpySequencePreloader(data_dir + features_2048_dir, data_dir + test_csv)}
dataloaders = {x: torch.utils.data.DataLoader(sequence_datasets[x], batch_size=batch_size, shuffle=True, num_workers=6) for x in ['train', 'test']}
dataset_sizes = {x: len(sequence_datasets[x]) for x in ['train', 'test']}
file_name = __file__.split('/')[-1].split('.')[0]
model_conv = torch.load(weights_dir + 'weights_rgb_cnn_lr_0.001_momentum_0.9_step_size_15_gamma_1_num_classes_10_batch_size_128.pt')
#print(model_conv)
for param in model_conv.parameters():
param.requires_grad = False
hidden_size = 512
input_size = 2048
model = Net(model_conv, input_size, hidden_size)
#print (model)
model = model.cuda(DEVICE)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.lstmNet.parameters(), lr=lr, momentum=momentum)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma)
model = train_model(model, criterion, optimizer, exp_lr_scheduler, num_epochs=num_epochs)