-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathucf101_abnn.py
347 lines (282 loc) · 11.9 KB
/
ucf101_abnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
from pathlib import Path
import json
import random
import os
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from torch.optim import SGD, lr_scheduler
import torch.nn.functional as F
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.backends import cudnn
import torchvision
from PIL import Image
from opts import parse_opts
from model import generate_model, make_data_parallel
#from mean import get_mean_std
#from dataset import get_validation_data
#from utils import Logger, worker_init_fn, get_lr
# from validation import val_epoch
from datasets import preprocess_data
import pdb
from main import *
from utils import *
import logging
from typing import Union, Optional, Tuple
from art.estimators.classification import PyTorchClassifier
#from art.classifiers import PyTorchClassifier
logger = logging.getLogger(__name__)
opt = get_opt(['--attack_type','pgd_inf', '--n_classes', '101', '--model_depth', '101', '--model', 'resnext',
'--no_mean_norm', '--no_std_norm']) # '--use_ape'
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MEAN = np.array([114.7748, 107.7354, 99.4750], dtype=np.float32)
STD = np.array([1, 1, 1], dtype=np.float32)
def preprocessing_fn_numpy(batch: np.ndarray):
"""
batch is a batch of videos, (batch, frames, height, width, channels)
Preprocessing resizes the height and width to 112 x 112 and reshapes
each video to (n_stack, 3, 16, height, width), where n_stack = int(time/16).
Outputs a list of videos, each of shape (n_stack, 3, 16, 112, 112)
"""
sample_duration = 16 # expected number of consecutive frames as input to the model
outputs = []
for i, x in enumerate(batch):
if x.ndim != 4:
raise ValueError(f"sample {i} in batch has {x.ndim} dims, not 4 (FHWC)")
if x.dtype in (float, np.float32):
if x.max() > 1.0 or x.min() < 0.0:
raise ValueError(f"sample {i} is a float but not in [0.0, 1.0] range")
x = (255 * x).round().astype(np.uint8)
if x.dtype != np.uint8:
raise ValueError(f"sample {i} - unrecognized dtype {x.dtype}")
# select a fixed number of consecutive frames
total_frames = x.shape[0]
if total_frames < sample_duration / 2:
raise ValueError(
f"video is too short; requires >= {sample_duration / 2} frames"
)
if total_frames <= sample_duration: # cyclic pad if not enough frames
x = np.vstack([x, x[: sample_duration - total_frames]])
# apply MARS preprocessing: scaling, cropping, normalizing
# opt = parse_opts(arguments=[])
opt.modality = "RGB"
opt.sample_size = 112
x_Image = [] # convert each frame to PIL Image
for frame in x:
x_Image.append(Image.fromarray(frame))
x_mars_preprocessed = preprocess_data.scale_crop(x_Image, 0, opt)
# reshape
x_reshaped = []
for ns in range(int(total_frames / sample_duration)):
np_frames = x_mars_preprocessed[
:, ns * sample_duration : (ns + 1) * sample_duration, :, :
].numpy()
x_reshaped.append(np_frames)
outputs.append(np.array(x_reshaped, dtype=np.float32))
return outputs
def preprocessing_fn_torch(
batch: Union[torch.Tensor, np.ndarray],
consecutive_frames: int = 40, # 16 or 40
scale_first: bool = True,
align_corners: bool = False,
):
"""
inputs - batch of videos each with shape (frames, height, width, channel)
outputs - batch of videos each with shape (n_stack, channel, stack_frames, new_height, new_width)
frames = n_stack * stack_frames (after padding)
new_height = new_width = 112
consecutive_frames - number of consecutive frames (stack_frames)
After resizing, a center crop is performed to make the image square
This is a differentiable alternative to MARS' PIL-based preprocessing.
There are some
"""
if not isinstance(batch, torch.Tensor):
logger.warning(f"batch {type(batch)} is not a torch.Tensor. Casting")
batch = torch.from_numpy(batch).to(DEVICE)
# raise ValueError(f"batch {type(batch)} is not a torch.Tensor")
if batch.dtype != torch.float32:
raise ValueError(f"batch {batch.dtype} should be torch.float32")
if batch.shape[0] != 1:
raise ValueError(f"Batch size {batch.shape[0]} != 1")
video = batch[0]
if video.ndim != 4:
raise ValueError(
f"video dims {video.ndim} != 4 (frames, height, width, channel)"
)
if video.shape[0] < 1:
raise ValueError("video must have at least one frame")
if tuple(video.shape[1:]) == (240, 320, 3):
standard_shape = True
elif tuple(video.shape[1:]) == (226, 400, 3):
logger.warning("Expected odd example shape (226, 400, 3)")
standard_shape = False
else:
raise ValueError(f"frame shape {tuple(video.shape[1:])} not recognized")
if video.max() > 1.0 or video.min() < 0.0:
raise ValueError("input should be float32 in [0, 1] range")
if not isinstance(consecutive_frames, int):
raise ValueError(f"consecutive_frames {consecutive_frames} must be an int")
if consecutive_frames < 1:
raise ValueError(f"consecutive_frames {consecutive_frames} must be positive")
# Select a integer multiple of consecutive frames
while len(video) < consecutive_frames:
# cyclic pad if insufficient for a single stack
video = torch.cat([video, video[: consecutive_frames - len(video)]])
if len(video) % consecutive_frames != 0:
# cut trailing frames
video = video[: len(video) - (len(video) % consecutive_frames)]
if scale_first:
# Attempts to directly follow MARS approach
# (frames, height, width, channel) to (frames, channel, height, width)
video = video.permute(0, 3, 1, 2)
if standard_shape: # 240 x 320
sample_height, sample_width = 112, 149
else: # 226 x 400
video = video[:, :, 1:-1, :] # crop top/bottom pixels, reduce by 2
sample_height, sample_width = 112, 200
video = torch.nn.functional.interpolate(
video,
size=(sample_height, sample_width),
mode="bilinear",
align_corners=align_corners,
)
if standard_shape:
crop_left = 18 # round((149 - 112)/2.0)
else:
crop_left = 40
video = video[:, :, :, crop_left : crop_left + sample_height]
else:
# More efficient, but not MARS approach
# Center crop
sample_size = 112
if standard_shape:
crop_width = 40
else:
video = video[:, 1:-1, :, :]
crop_width = 88
video = video[:, :, crop_width:-crop_width, :]
# Downsample to (112, 112) frame size
# (frames, height, width, channel) to (frames, channel, height, width)
video = video.permute(0, 3, 1, 2)
video = torch.nn.functional.interpolate(
video,
size=(sample_size, sample_size),
mode="bilinear",
align_corners=align_corners,
)
if video.max() > 1.0:
raise ValueError("Video exceeded max after interpolation")
if video.min() < 0.0:
raise ValueError("Video under min after interpolation")
# reshape into stacks of frames
video = torch.reshape(video, (-1, consecutive_frames) + video.shape[1:])
# transpose to (stacks, channel, stack_frames, height, width)
video = video.permute(0, 2, 1, 3, 4)
# video = torch.transpose(video, axes=(0, 4, 1, 2, 3))
# normalize before changing channel position?
#video = torch.transpose(video, 1, 4)
#video = ((video * 255) - torch.from_numpy(MEAN).to(DEVICE)) / torch.from_numpy(
# STD
#).to(DEVICE)
#video = torch.transpose(video, 4, 1)
return video
def fit_preprocessing_fn_numpy(batch: np.ndarray):
"""
Randomly sample a single stack from each video
"""
x = preprocessing_fn_numpy(batch)
x = np.stack([x_i[np.random.randint(x_i.shape[0])] for x_i in x])
return x
preprocessing_fn = fit_preprocessing_fn_numpy
def make_model(
model_status: str = "ucf101_trained", weights_path: Optional[str] = None, use_ape = False
) -> Tuple[torch.nn.DataParallel, torch.optim.SGD]:
statuses = ("ucf101_trained", "kinetics_pretrained")
if model_status not in statuses:
raise ValueError(f"model_status {model_status} not in {statuses}")
trained = model_status == "ucf101_trained"
if not trained and weights_path is None:
raise ValueError("weights_path cannot be None for 'kinetics_pretrained'")
opt.device = torch.device('cpu' if opt.no_cuda else 'cuda')
opt.use_ape = use_ape
if not opt.no_cuda:
cudnn.benchmark = True
if opt.accimage:
torchvision.set_image_backend('accimage')
opt.resume_path = weights_path
#model = generate_model(opt.model, sample_duration=16)
model = generate_model('resnext_onthefly', sample_duration=40) # Mine; 16 or 40
if opt.use_ape:
in_ch = 3
G = Generator(in_ch).to(opt.device)
model = resume_model(opt.resume_path, opt.arch, model)
#model = resume_model_my(opt.resume_path, opt.arch, model) # Mine
#model = make_data_parallel(model, opt.distributed, opt.device)
if opt.use_ape:
# G = make_data_parallel(G, opt.distributed, opt.device)
if opt.ape_path is not None:
#checkpoint = torch.load(opt.ape_path)
# G.load_state_dict(checkpoint['generator'])
G.load_state_dict(torch.load(opt.resume_path)['generator'])
G = make_data_parallel(G, opt.distributed, opt.device)
model = torch.nn.Sequential(G, model)
parameters = model.parameters()
logger.info(f"Loading model... {opt.model} {opt.model_depth}")
if opt.nesterov:
dampening = 0
else:
dampening = opt.dampening
optimizer = SGD(parameters,
lr=opt.learning_rate,
momentum=opt.momentum,
dampening=dampening,
weight_decay=opt.weight_decay,
nesterov=opt.nesterov)
return model, optimizer
class OuterModel(torch.nn.Module):
def __init__(
self, weights_path: Optional[str], max_frames: int = 0, use_ape = False, **model_kwargs,
):
"""
Max frames is the maximum number of input frames.
If max_frames == 0, no clipping is done
Else if max_frames > 0, frames are clipped to that number.
This can be helpful for smaller memory cards.
"""
super().__init__()
max_frames = int(max_frames)
if max_frames < 0:
raise ValueError(f"max_frames {max_frames} cannot be negative")
self.max_frames = max_frames
self.model, self.optimizer = make_model(
weights_path=weights_path, use_ape=use_ape, **model_kwargs
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
#print(x.shape)
if self.max_frames:
x = x[:, : self.max_frames]
#print(x.shape)
if self.training:
# Use preprocessing_fn_numpy in dataset preprocessing
return self.model(x)
else:
x = preprocessing_fn_torch(x)
stack_outputs = self.model(x)
output = stack_outputs.mean(axis=0, keepdims=True)
return output
def get_art_model(
model_kwargs: dict, wrapper_kwargs: dict, weights_path: Optional[str] = None
) -> PyTorchClassifier:
model = OuterModel(weights_path=weights_path, **model_kwargs)
#model.to(opt.device)
wrapped_model = PyTorchClassifier(
model,
loss=torch.nn.CrossEntropyLoss(),
optimizer=model.optimizer,
input_shape=(None, 240, 320, 3),
nb_classes=101,
clip_values=(0.0, 1.0),
**wrapper_kwargs,
)
return wrapped_model