-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgridworld.py
179 lines (161 loc) · 8.5 KB
/
gridworld.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Credits : https://github.com/mpatacchiola/dissecting-reinforcement-learning/
#!/usr/bin/env python
#MIT License
#Copyright (c) 2017 Massimiliano Patacchiola
#
#Permission is hereby granted, free of charge, to any person obtaining a copy
#of this software and associated documentation files (the "Software"), to deal
#in the Software without restriction, including without limitation the rights
#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#copies of the Software, and to permit persons to whom the Software is
#furnished to do so, subject to the following conditions:
#
#The above copyright notice and this permission notice shall be included in all
#copies or substantial portions of the Software.
#
#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
#SOFTWARE.
#Class for creating a gridworld of arbitrary size and with arbitrary obstacles.
#Each state of the gridworld should have a reward. The transition matrix is defined
#as the probability of executing an action given a command to the robot.
import numpy as np
class GridWorld:
def __init__(self, tot_row, tot_col):
self.action_space_size = 4
self.world_row = tot_row
self.world_col = tot_col
#The world is a matrix of size row x col x 2
#The first layer contains the obstacles
#The second layer contains the rewards
#self.world_matrix = np.zeros((tot_row, tot_col, 2))
self.transition_matrix = np.ones((self.action_space_size, self.action_space_size))/ self.action_space_size
#self.transition_array = np.ones(self.action_space_size) / self.action_space_size
self.reward_matrix = np.zeros((tot_row, tot_col))
self.state_matrix = np.zeros((tot_row, tot_col))
self.position = [np.random.randint(tot_row), np.random.randint(tot_col)]
#def setTransitionArray(self, transition_array):
#if(transition_array.shape != self.transition_array):
#raise ValueError('The shape of the two matrices must be the same.')
#self.transition_array = transition_array
def setTransitionMatrix(self, transition_matrix):
'''Set the reward matrix.
The transition matrix here is intended as a matrix which has a line
for each action and the element of the row are the probabilities to
executes each action when a command is given. For example:
[[0.55, 0.25, 0.10, 0.10]
[0.25, 0.25, 0.25, 0.25]
[0.30, 0.20, 0.40, 0.10]
[0.10, 0.20, 0.10, 0.60]]
This matrix defines the transition rules for all the 4 possible actions.
The first row corresponds to the probabilities of executing each one of
the 4 actions when the policy orders to the robot to go UP. In this case
the transition model says that with a probability of 0.55 the robot will
go UP, with a probaiblity of 0.25 RIGHT, 0.10 DOWN and 0.10 LEFT.
'''
if(transition_matrix.shape != self.transition_matrix.shape):
raise ValueError('The shape of the two matrices must be the same.')
self.transition_matrix = transition_matrix
def setRewardMatrix(self, reward_matrix):
'''Set the reward matrix.
'''
if(reward_matrix.shape != self.reward_matrix.shape):
raise ValueError('The shape of the matrix does not match with the shape of the world.')
self.reward_matrix = reward_matrix
def setStateMatrix(self, state_matrix):
'''Set the obstacles in the world.
The input to the function is a matrix with the
same size of the world
-1 for states which are not walkable.
+1 for terminal states
0 for all the walkable states (non terminal)
The following matrix represents the 4x3 world
used in the series "dissecting reinforcement learning"
[[0, 0, 0, +1]
[0, -1, 0, +1]
[0, 0, 0, 0]]
'''
if(state_matrix.shape != self.state_matrix.shape):
raise ValueError('The shape of the matrix does not match with the shape of the world.')
self.state_matrix = state_matrix
def setPosition(self, index_row=None, index_col=None):
''' Set the position of the robot in a specific state.
'''
if(index_row is None or index_col is None): self.position = [np.random.randint(tot_row), np.random.randint(tot_col)]
else: self.position = [index_row, index_col]
def render(self):
''' Print the current world in the terminal.
O represents the robot position
- respresent empty states.
# represents obstacles
* represents terminal states
'''
graph = ""
for row in range(self.world_row):
row_string = ""
for col in range(self.world_col):
if(self.position == [row, col]): row_string += u" \u25CB " # u" \u25CC "
else:
if(self.state_matrix[row, col] == 0): row_string += ' - '
elif(self.state_matrix[row, col] == -1): row_string += ' # '
elif(self.state_matrix[row, col] == +1): row_string += ' * '
row_string += '\n'
graph += row_string
print (graph)
def reset(self, exploring_starts=False):
''' Set the position of the robot in the bottom left corner.
It returns the first observation
'''
if exploring_starts:
while(True):
row = np.random.randint(0, self.world_row)
col = np.random.randint(0, self.world_col)
if(self.state_matrix[row, col] == 0): break
self.position = [row, col]
else:
self.position = [self.world_row-1, 0]
#reward = self.reward_matrix[self.position[0], self.position[1]]
return self.position
def step(self, action):
''' One step in the world.
[observation, reward, done = env.step(action)]
The robot moves one step in the world based on the action given.
The action can be 0=UP, 1=RIGHT, 2=DOWN, 3=LEFT
@return observation the position of the robot after the step
@return reward the reward associated with the next state
@return done True if the state is terminal
'''
if(action >= self.action_space_size):
raise ValueError('The action is not included in the action space.')
#Based on the current action and the probability derived
#from the trasition model it chooses a new actio to perform
# Generate a non uniform random sample from np.arange(4) of size=1 where probabilities of
# elements of np.arrange(4) is given by the elements of transition_matrix
# TODO : Check if this line is significant
# TODO : for MC for control, the transition matrix will not be given, hence this line
# TODO : doesnt make any sense
probabilities = [0.1]*4
probabilities[int(action)] = 0.7
action = np.random.choice(4, 1, p=probabilities)
# action = np.random.choice(4, 1, p=self.transition_matrix[int(action),:])
#action = self.transition_model(action)
#Generating a new position based on the current position and action
if(action == 0): new_position = [self.position[0]-1, self.position[1]] #UP
elif(action == 1): new_position = [self.position[0], self.position[1]+1] #RIGHT
elif(action == 2): new_position = [self.position[0]+1, self.position[1]] #DOWN
elif(action == 3): new_position = [self.position[0], self.position[1]-1] #LEFT
else: raise ValueError('The action is not included in the action space.')
#Check if the new position is a valid position
#print(self.state_matrix)
if (new_position[0]>=0 and new_position[0]<self.world_row):
if(new_position[1]>=0 and new_position[1]<self.world_col):
if(self.state_matrix[new_position[0], new_position[1]] != -1):
self.position = new_position
reward = self.reward_matrix[self.position[0], self.position[1]]
#Done is True if the state is a terminal state
done = bool(self.state_matrix[self.position[0], self.position[1]])
return self.position, reward, done