-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathpage.rs
547 lines (507 loc) · 16 KB
/
page.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
// page.rs
// Memory routines
// Stephen Marz
// 6 October 2019
use core::{mem::size_of, ptr::null_mut};
// ////////////////////////////////
// // Allocation routines
// ////////////////////////////////
extern "C" {
static HEAP_START: usize;
static HEAP_SIZE: usize;
}
// We will use ALLOC_START to mark the start of the actual
// memory we can dish out.
static mut ALLOC_START: usize = 0;
const PAGE_ORDER: usize = 12;
pub const PAGE_SIZE: usize = 1 << 12;
/// Align (set to a multiple of some power of two)
/// This takes an order which is the exponent to 2^order
/// Therefore, all alignments must be made as a power of two.
/// This function always rounds up.
pub const fn align_val(val: usize, order: usize) -> usize {
let o = (1usize << order) - 1;
(val + o) & !o
}
#[repr(u8)]
pub enum PageBits {
Empty = 0,
Taken = 1 << 0,
Last = 1 << 1,
}
impl PageBits {
// We convert PageBits to a u8 a lot, so this is
// for convenience.
pub fn val(self) -> u8 {
self as u8
}
}
// Each page is described by the Page structure. Linux does this
// as well, where each 4096-byte chunk of memory has a structure
// associated with it. However, there structure is much larger.
pub struct Page {
flags: u8,
}
impl Page {
// If this page has been marked as the final allocation,
// this function returns true. Otherwise, it returns false.
pub fn is_last(&self) -> bool {
if self.flags & PageBits::Last.val() != 0 {
true
}
else {
false
}
}
// If the page is marked as being taken (allocated), then
// this function returns true. Otherwise, it returns false.
pub fn is_taken(&self) -> bool {
if self.flags & PageBits::Taken.val() != 0 {
true
}
else {
false
}
}
// This is the opposite of is_taken().
pub fn is_free(&self) -> bool {
!self.is_taken()
}
// Clear the Page structure and all associated allocations.
pub fn clear(&mut self) {
self.flags = PageBits::Empty.val();
}
// Set a certain flag. We ran into trouble here since PageBits
// is an enumeration and we haven't implemented the BitOr Trait
// on it.
pub fn set_flag(&mut self, flag: PageBits) {
self.flags |= flag.val();
}
pub fn clear_flag(&mut self, flag: PageBits) {
self.flags &= !(flag.val());
}
}
/// Initialize the allocation system. There are several ways that we can
/// implement the page allocator:
/// 1. Free list (singly linked list where it starts at the first free
/// allocation) 2. Bookkeeping list (structure contains a taken and length)
/// 3. Allocate one Page structure per 4096 bytes (this is what I chose)
/// 4. Others
pub fn init() {
unsafe {
let num_pages = HEAP_SIZE / PAGE_SIZE;
let ptr = HEAP_START as *mut Page;
// Clear all pages to make sure that they aren't accidentally
// taken
for i in 0..num_pages {
(*ptr.add(i)).clear();
}
// Determine where the actual useful memory starts. This will be
// after all Page structures. We also must align the ALLOC_START
// to a page-boundary (PAGE_SIZE = 4096). ALLOC_START =
// (HEAP_START + num_pages * size_of::<Page>() + PAGE_SIZE - 1)
// & !(PAGE_SIZE - 1);
ALLOC_START = align_val(
HEAP_START
+ num_pages * size_of::<Page,>(),
PAGE_ORDER,
);
}
}
/// Allocate a page or multiple pages
/// pages: the number of PAGE_SIZE pages to allocate
pub fn alloc(pages: usize) -> *mut u8 {
// We have to find a contiguous allocation of pages
assert!(pages > 0);
unsafe {
// We create a Page structure for each page on the heap. We
// actually might have more since HEAP_SIZE moves and so does
// the size of our structure, but we'll only waste a few bytes.
let num_pages = HEAP_SIZE / PAGE_SIZE;
let ptr = HEAP_START as *mut Page;
for i in 0..num_pages - pages {
let mut found = false;
// Check to see if this Page is free. If so, we have our
// first candidate memory address.
if (*ptr.add(i)).is_free() {
// It was FREE! Yay!
found = true;
for j in i..i + pages {
// Now check to see if we have a
// contiguous allocation for all of the
// request pages. If not, we should
// check somewhere else.
if (*ptr.add(j)).is_taken() {
found = false;
break;
}
}
}
// We've checked to see if there are enough contiguous
// pages to form what we need. If we couldn't, found
// will be false, otherwise it will be true, which means
// we've found valid memory we can allocate.
if found {
for k in i..i + pages - 1 {
(*ptr.add(k)).set_flag(PageBits::Taken);
}
// The marker for the last page is
// PageBits::Last This lets us know when we've
// hit the end of this particular allocation.
(*ptr.add(i+pages-1)).set_flag(PageBits::Taken);
(*ptr.add(i+pages-1)).set_flag(PageBits::Last);
// The Page structures themselves aren't the
// useful memory. Instead, there is 1 Page
// structure per 4096 bytes starting at
// ALLOC_START.
return (ALLOC_START + PAGE_SIZE * i)
as *mut u8;
}
}
}
// If we get here, that means that no contiguous allocation was
// found.
null_mut()
}
/// Allocate and zero a page or multiple pages
/// pages: the number of pages to allocate
/// Each page is PAGE_SIZE which is calculated as 1 << PAGE_ORDER
/// On RISC-V, this typically will be 4,096 bytes.
pub fn zalloc(pages: usize) -> *mut u8 {
// Allocate and zero a page.
// First, let's get the allocation
let ret = alloc(pages);
if !ret.is_null() {
let size = (PAGE_SIZE * pages) / 8;
let big_ptr = ret as *mut u64;
for i in 0..size {
// We use big_ptr so that we can force an
// sd (store doubleword) instruction rather than
// the sb. This means 8x fewer stores than before.
// Typically we have to be concerned about remaining
// bytes, but fortunately 4096 % 8 = 0, so we
// won't have any remaining bytes.
unsafe {
(*big_ptr.add(i)) = 0;
}
}
}
ret
}
/// Deallocate a page by its pointer
/// The way we've structured this, it will automatically coalesce
/// contiguous pages.
pub fn dealloc(ptr: *mut u8) {
// Make sure we don't try to free a null pointer.
assert!(!ptr.is_null());
unsafe {
let addr =
HEAP_START + (ptr as usize - ALLOC_START) / PAGE_SIZE;
// Make sure that the address makes sense. The address we
// calculate here is the page structure, not the HEAP address!
assert!(addr >= HEAP_START && addr < HEAP_START + HEAP_SIZE);
let mut p = addr as *mut Page;
// Keep clearing pages until we hit the last page.
while (*p).is_taken() && !(*p).is_last() {
(*p).clear();
p = p.add(1);
}
// If the following assertion fails, it is most likely
// caused by a double-free.
assert!(
(*p).is_last() == true,
"Possible double-free detected! (Not taken found \
before last)"
);
// If we get here, we've taken care of all previous pages and
// we are on the last page.
(*p).clear();
}
}
/// Print all page allocations
/// This is mainly used for debugging.
pub fn print_page_allocations() {
unsafe {
let num_pages = HEAP_SIZE / PAGE_SIZE;
let mut beg = HEAP_START as *const Page;
let end = beg.add(num_pages);
let alloc_beg = ALLOC_START;
let alloc_end = ALLOC_START + num_pages * PAGE_SIZE;
println!();
println!(
"PAGE ALLOCATION TABLE\nMETA: {:p} -> {:p}\nPHYS: \
0x{:x} -> 0x{:x}",
beg, end, alloc_beg, alloc_end
);
println!("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
let mut num = 0;
while beg < end {
if (*beg).is_taken() {
let start = beg as usize;
let memaddr = ALLOC_START
+ (start - HEAP_START)
* PAGE_SIZE;
print!("0x{:x} => ", memaddr);
loop {
num += 1;
if (*beg).is_last() {
let end = beg as usize;
let memaddr = ALLOC_START
+ (end
- HEAP_START)
* PAGE_SIZE
+ PAGE_SIZE - 1;
print!(
"0x{:x}: {:>3} page(s)",
memaddr,
(end - start + 1)
);
println!(".");
break;
}
beg = beg.add(1);
}
}
beg = beg.add(1);
}
println!("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
println!(
"Allocated: {:>5} pages ({:>9} bytes).",
num,
num * PAGE_SIZE
);
println!(
"Free : {:>5} pages ({:>9} bytes).",
num_pages - num,
(num_pages - num) * PAGE_SIZE
);
println!();
}
}
// ////////////////////////////////
// // MMU Routines
// ////////////////////////////////
// Represent (repr) our entry bits as
// unsigned 64-bit integers.
#[repr(i64)]
#[derive(Copy, Clone)]
pub enum EntryBits {
None = 0,
Valid = 1 << 0,
Read = 1 << 1,
Write = 1 << 2,
Execute = 1 << 3,
User = 1 << 4,
Global = 1 << 5,
Access = 1 << 6,
Dirty = 1 << 7,
// Convenience combinations
ReadWrite = 1 << 1 | 1 << 2,
ReadExecute = 1 << 1 | 1 << 3,
ReadWriteExecute = 1 << 1 | 1 << 2 | 1 << 3,
// User Convenience Combinations
UserReadWrite = 1 << 1 | 1 << 2 | 1 << 4,
UserReadExecute = 1 << 1 | 1 << 3 | 1 << 4,
UserReadWriteExecute = 1 << 1 | 1 << 2 | 1 << 3 | 1 << 4,
}
// Helper functions to convert the enumeration
// into an i64, which is what our page table
// entries will be.
impl EntryBits {
pub fn val(self) -> i64 {
self as i64
}
}
// A single entry. We're using an i64 so that
// this will sign-extend rather than zero-extend
// since RISC-V requires that the reserved sections
// take on the most significant bit.
pub struct Entry {
pub entry: i64,
}
// The Entry structure describes one of the 512 entries per table, which is
// described in the RISC-V privileged spec Figure 4.18.
impl Entry {
pub fn is_valid(&self) -> bool {
self.get_entry() & EntryBits::Valid.val() != 0
}
// The first bit (bit index #0) is the V bit for
// valid.
pub fn is_invalid(&self) -> bool {
!self.is_valid()
}
// A leaf has one or more RWX bits set
pub fn is_leaf(&self) -> bool {
self.get_entry() & 0xe != 0
}
pub fn is_branch(&self) -> bool {
!self.is_leaf()
}
pub fn set_entry(&mut self, entry: i64) {
self.entry = entry;
}
pub fn get_entry(&self) -> i64 {
self.entry
}
}
// Table represents a single table, which contains 512 (2^9), 64-bit entries.
pub struct Table {
pub entries: [Entry; 512],
}
impl Table {
pub fn len() -> usize {
512
}
}
/// Map a virtual address to a physical address using 4096-byte page
/// size.
/// root: a mutable reference to the root Table
/// vaddr: The virtual address to map
/// paddr: The physical address to map
/// bits: An OR'd bitset containing the bits the leaf should have.
/// The bits should contain only the following:
/// Read, Write, Execute, User, and/or Global
/// The bits MUST include one or more of the following:
/// Read, Write, Execute
/// The valid bit automatically gets added.
pub fn map(root: &mut Table, vaddr: usize, paddr: usize, bits: i64, level: usize) {
// Make sure that Read, Write, or Execute have been provided
// otherwise, we'll leak memory and always create a page fault.
assert!(bits & 0xe != 0);
// Extract out each VPN from the virtual address
// On the virtual address, each VPN is exactly 9 bits,
// which is why we use the mask 0x1ff = 0b1_1111_1111 (9 bits)
let vpn = [
// VPN[0] = vaddr[20:12]
(vaddr >> 12) & 0x1ff,
// VPN[1] = vaddr[29:21]
(vaddr >> 21) & 0x1ff,
// VPN[2] = vaddr[38:30]
(vaddr >> 30) & 0x1ff,
];
// Just like the virtual address, extract the physical address
// numbers (PPN). However, PPN[2] is different in that it stores
// 26 bits instead of 9. Therefore, we use,
// 0x3ff_ffff = 0b11_1111_1111_1111_1111_1111_1111 (26 bits).
let ppn = [
// PPN[0] = paddr[20:12]
(paddr >> 12) & 0x1ff,
// PPN[1] = paddr[29:21]
(paddr >> 21) & 0x1ff,
// PPN[2] = paddr[55:30]
(paddr >> 30) & 0x3ff_ffff,
];
// We will use this as a floating reference so that we can set
// individual entries as we walk the table.
let mut v = &mut root.entries[vpn[2]];
// Now, we're going to traverse the page table and set the bits
// properly. We expect the root to be valid, however we're required to
// create anything beyond the root.
// In Rust, we create a range iterator using the .. operator.
// The .rev() will reverse the iteration since we need to start with
// VPN[2] The .. operator is inclusive on start but exclusive on end.
// So, (0..2) will iterate 0 and 1.
for i in (level..2).rev() {
if !v.is_valid() {
// Allocate a page
let page = zalloc(1);
// The page is already aligned by 4,096, so store it
// directly The page is stored in the entry shifted
// right by 2 places.
v.set_entry(
(page as i64 >> 2)
| EntryBits::Valid.val(),
);
}
let entry = ((v.get_entry() & !0x3ff) << 2) as *mut Entry;
v = unsafe { entry.add(vpn[i]).as_mut().unwrap() };
}
// When we get here, we should be at VPN[0] and v should be pointing to
// our entry.
// The entry structure is Figure 4.18 in the RISC-V Privileged
// Specification
let entry = (ppn[2] << 28) as i64 | // PPN[2] = [53:28]
(ppn[1] << 19) as i64 | // PPN[1] = [27:19]
(ppn[0] << 10) as i64 | // PPN[0] = [18:10]
bits | // Specified bits, such as User, Read, Write, etc
EntryBits::Valid.val(); // Valid bit
// Set the entry. V should be set to the correct pointer by the loop
// above.
v.set_entry(entry);
}
/// Unmaps and frees all memory associated with a table.
/// root: The root table to start freeing.
/// NOTE: This does NOT free root directly. This must be
/// freed manually.
/// The reason we don't free the root is because it is
/// usually embedded into the Process structure.
pub fn unmap(root: &mut Table) {
// Start with level 2
for lv2 in 0..Table::len() {
let ref entry_lv2 = root.entries[lv2];
if entry_lv2.is_valid() && entry_lv2.is_branch() {
// This is a valid entry, so drill down and free.
let memaddr_lv1 = (entry_lv2.get_entry() & !0x3ff) << 2;
let table_lv1 = unsafe {
// Make table_lv1 a mutable reference instead of a pointer.
(memaddr_lv1 as *mut Table).as_mut().unwrap()
};
for lv1 in 0..Table::len() {
let ref entry_lv1 = table_lv1.entries[lv1];
if entry_lv1.is_valid() && entry_lv1.is_branch()
{
let memaddr_lv0 = (entry_lv1.get_entry()
& !0x3ff) << 2;
// The next level is level 0, which
// cannot have branches, therefore,
// we free here.
dealloc(memaddr_lv0 as *mut u8);
}
}
dealloc(memaddr_lv1 as *mut u8);
}
}
}
/// Walk the page table to convert a virtual address to a
/// physical address.
/// If a page fault would occur, this returns None
/// Otherwise, it returns Some with the physical address.
pub fn virt_to_phys(root: &Table, vaddr: usize) -> Option<usize> {
// Walk the page table pointed to by root
let vpn = [
// VPN[0] = vaddr[20:12]
(vaddr >> 12) & 0x1ff,
// VPN[1] = vaddr[29:21]
(vaddr >> 21) & 0x1ff,
// VPN[2] = vaddr[38:30]
(vaddr >> 30) & 0x1ff,
];
let mut v = &root.entries[vpn[2]];
for i in (0..=2).rev() {
if v.is_invalid() {
// This is an invalid entry, page fault.
break;
}
else if v.is_leaf() {
// According to RISC-V, a leaf can be at any level.
// The offset mask masks off the PPN. Each PPN is 9
// bits and they start at bit #12. So, our formula
// 12 + i * 9
let off_mask = (1 << (12 + i * 9)) - 1;
let vaddr_pgoff = vaddr & off_mask;
let addr = ((v.get_entry() << 2) as usize) & !off_mask;
return Some(addr | vaddr_pgoff);
}
// Set v to the next entry which is pointed to by this
// entry. However, the address was shifted right by 2 places
// when stored in the page table entry, so we shift it left
// to get it back into place.
let entry = ((v.get_entry() & !0x3ff) << 2) as *const Entry;
// We do i - 1 here, however we should get None or Some() above
// before we do 0 - 1 = -1.
v = unsafe { entry.add(vpn[i - 1]).as_ref().unwrap() };
}
// If we get here, we've exhausted all valid tables and haven't
// found a leaf.
None
}