diff --git a/benchmark/benchmark_vllm_060/README.md b/benchmark/benchmark_vllm_060/README.md index 157bd9df7ac..5a1247c5f4b 100644 --- a/benchmark/benchmark_vllm_060/README.md +++ b/benchmark/benchmark_vllm_060/README.md @@ -1,5 +1,43 @@ ## How to reproduce the benchmark results for SGLang v0.3.0 compared to vLLM v0.6.0 +In short, with multi step enabled, in online scenarios that we benchmarked, the Median TTFT of vLLM is **3 times** that of SGLang, and the Median ITL is **10 times** that of SGLang. Lower Median TTFT and ITL are better. vLLM's multi-step optimization did not improve throughput while ensuring lower Median TTFT and ITL. Also, under maximum throughput benchmark, if vLLM does not set gpu util to 0.95 separately and uses the default configuration instead, its maximum throughput is **lower** than that of SGLang. + +## Online benchmark results + +### Llama 3.1 8B Instruct 1 x A100 80G + +| RPS | Num prompts | Engine | Median E2E Latency | Median TTFT | Median TPOT | Median ITL | +|------|-------------|--------|--------------------|-------------|-------------|------------| +| 4 | 1200 | SGLang | 1564.17 | **31.98** | 13.17 | **11.93** | +| 4 | 1200 | vLLM | 1691.97 | **100.48** | 14.14 | **129.32** | +| 8 | 2400 | SGLang | 2175.02 | **35.68** | 17.85 | **14.41** | +| 8 | 2400 | vLLM | 2137.16 | **120.39** | 17.09 | **158.63** | + +### Llama 3.1 70B Insruct 4 x H100 80G + +| RPS | Num Prompts | Engine | Median E2E Latency | Median TTFT | Median TPOT | Median ITL | +|------|-------------|--------|--------------------|-------------|-------------|------------| +| 4 | 1200 | SGLang | 3005.24 | **53.94** | 25.03 | **21.67** | +| 4 | 1200 | vLLM | 2915.60 | **179.15** | 23.58 | **231.23** | +| 8 | 2400 | SGLang | 4064.98 | **58.11** | 33.07 | **24.45** | +| 8 | 2400 | vLLM | 3752.38 | **207.12** | 29.15 | **275.32** | + +## Offline benchmark results + +### Llama 3.1 8B Instruct 1 x A100 80G + +| RPS | Num Prompts | Engine | Request throughput | Output token throughput | +|------|-------------|--------|--------------------|-------------------------| +| inf | 5000 | SGLang | 22.03 | **4281.51** | +| inf | 5000 | vLLM | 21.27 | **4132.37** | + +### Llama 3.1 70B Insruct 4 x H100 80G + +| RPS | Num Prompts | Engine | Request throughput | Output token throughput | +|------|-------------|--------|--------------------|-------------------------| +| inf | 5000 | SGLang | 19.84 | **3856.01** | +| inf | 5000 | vLLM | 19.04 | **3700.64** | + ## Installation ```bash @@ -49,39 +87,3 @@ python -m vllm.entrypoints.openai.api_server --model meta-llama/Meta-Llama-3.1-7 python3 -m sglang.bench_serving --backend sglang --dataset-name sharegpt --num-prompts 5000 python3 -m sglang.bench_serving --backend vllm --dataset-name sharegpt --num-prompts 5000 ``` - -## Online benchmark results - -### Llama 3.1 8B Instruct 1 x A100 80G - -| RPS | Num prompts | Engine | Median E2E Latency | Median TTFT | Median TPOT | Median ITL | -|------|-------------|--------|--------------------|-------------|-------------|------------| -| 4 | 1200 | SGLang | 1564.17 | **31.98** | 13.17 | **11.93** | -| 4 | 1200 | vLLM | 1691.97 | **100.48** | 14.14 | **129.32** | -| 8 | 2400 | SGLang | 2175.02 | **35.68** | 17.85 | **14.41** | -| 8 | 2400 | vLLM | 2137.16 | **120.39** | 17.09 | **158.63** | - -### Llama 3.1 70B Insruct 4 x H100 80G - -| RPS | Num Prompts | Engine | Median E2E Latency | Median TTFT | Median TPOT | Median ITL | -|------|-------------|--------|--------------------|-------------|-------------|------------| -| 4 | 1200 | SGLang | 3005.24 | **53.94** | 25.03 | **21.67** | -| 4 | 1200 | vLLM | 2915.60 | **179.15** | 23.58 | **231.23** | -| 8 | 2400 | SGLang | 4064.98 | **58.11** | 33.07 | **24.45** | -| 8 | 2400 | vLLM | 3752.38 | **207.12** | 29.15 | **275.32** | - -## Offline benchmark results - -### Llama 3.1 8B Instruct 1 x A100 80G - -| RPS | Num Prompts | Engine | Request throughput | Output token throughput | -|------|-------------|--------|--------------------|-------------------------| -| inf | 5000 | SGLang | 22.03 | **4281.51** | -| inf | 5000 | vLLM | 21.27 | **4132.37** | - -### Llama 3.1 70B Insruct 4 x H100 80G - -| RPS | Num Prompts | Engine | Request throughput | Output token throughput | -|------|-------------|--------|--------------------|-------------------------| -| inf | 5000 | SGLang | 19.84 | **3856.01** | -| inf | 5000 | vLLM | 19.04 | **3700.64** |