随着数据量越来越大,在一个操作系统存不下所有的数据,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统。HDFS只是分布式文件管理系统中的一种。
HDFS (Hadoop Distributed File System),它是一个文件系统,用于存储文件,通过目录树来定位文件;其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色。 HDFS的使用场景:适合一次写入,多次读出的场景,且不支持文件的修改。适合用来做数据分析,并不适合用来做网盘应用。
1)高容错性
(1)数据自动保存多个副本。它通过增加副本的形式,提高容错性。
(2)某一个副本丢失以后,它可以自动恢复。
2)适合处理大数据
(1)数据规模:能够处理数据规模达到GB、TB、甚至PB级别的数据;
(2)文件规模:能够处理百万规模以上的文件数量,数量相当之大。
3)可构建在廉价机器上,通过多副本机制,提高可靠性。
1)不适合低延时数据访问,比如毫秒级的存储数据,是做不到的。
2)无法高效的对大量小文件进行存储。 (1)存储大量小文件的话,它会占用NameNode大量的内存来存储文件目录和块信息。这样是不可取的,因为NameNode的内存总是有限的; (2)小文件存储的寻址时间会超过读取时间,它违反了HDFS的设计目标。
1 ) NameNode (nn) :就是Master,它是一个主管、管理者。
(1)管理HDFS的名称空间;
(2)配置副本策略;
(3)管理数据块(Block)映射信息;
(4)处理客户端读写请求。
2 ) DataNode:就是Slave。NameNode下达命令,DataNode执行实际的操作。
(1)存储实际的数据块;
(2)执行数据块的读/写操作。
3 ) Client:就是客户端。
(1)文件切分。文件上传HDFS的时候,Client将文件切分成一个一个的Block,然后进行上传;
(2)与NameNode交互,获取文件的位置信息;
(3)与DataNode交互,读取或者写入数据;
(4) Client提供一些命令来管理HDFS,比如NameNode格式化;
(5)Client可以通过一些命令来访问HDFS,比如对HDFS增删查改操作;
- Secondary NameNode:并非NameNode的热备。当NameNode挂掉的时候,它并不能马上替换NameNode并提供服务。
(1)辅助NameNode,分担其工作量,比如定期合并Fsimage和Edits,并推送给NameNode ;
(2)在紧急情况下,可辅助恢复NameNode。
思考:为什么块的大小不能设置太小,也不能设置太大?
(1) HDFS的块设置太小,会增加寻址时间,程序一直在找块的开始位置
(2)如果块设置的太大,从磁盘传输数据的时间会明显大于定位这个块开始位置所需的时间。导致程序在处理这块数据时,会非常慢。
总结:HDFS块的大小设置主要取决于磁盘传输速率。
bin/hadoop fs 具体命令 OR bin/hdfs dfs 具体命令
dfs是fs的实现类。
[atguigu@hadoop102 hadoop-2.7.2]$ bin/hadoop fs
[-appendToFile <localsrc> ... <dst>]
[-cat [-ignoreCrc] <src> ...]
[-checksum <src> ...]
[-chgrp [-R] GROUP PATH...]
[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]
[-chown [-R] [OWNER][:[GROUP]] PATH...]
[-copyFromLocal [-f] [-p] <localsrc> ... <dst>]
[-copyToLocal [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
[-count [-q] <path> ...]
[-cp [-f] [-p] <src> ... <dst>]
[-createSnapshot <snapshotDir> [<snapshotName>]]
[-deleteSnapshot <snapshotDir> <snapshotName>]
[-df [-h] [<path> ...]]
[-du [-s] [-h] <path> ...]
[-expunge]
[-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
[-getfacl [-R] <path>]
[-getmerge [-nl] <src> <localdst>]
[-help [cmd ...]]
[-ls [-d] [-h] [-R] [<path> ...]]
[-mkdir [-p] <path> ...]
[-moveFromLocal <localsrc> ... <dst>]
[-moveToLocal <src> <localdst>]
[-mv <src> ... <dst>]
[-put [-f] [-p] <localsrc> ... <dst>]
[-renameSnapshot <snapshotDir> <oldName> <newName>]
[-rm [-f] [-r|-R] [-skipTrash] <src> ...]
[-rmdir [--ignore-fail-on-non-empty] <dir> ...]
[-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set <acl_spec> <path>]]
[-setrep [-R] [-w] <rep> <path> ...]
[-stat [format] <path> ...]
[-tail [-f] <file>]
[-test -[defsz] <path>]
[-text [-ignoreCrc] <src> ...]
[-touchz <path> ...]
[-usage [cmd ...]]
(0)启动Hadoop集群(方便后续的测试)
[atguigu@hadoop102 hadoop-2.7.2]$ sbin/start-dfs.sh
[atguigu@hadoop103 hadoop-2.7.2]$ sbin/start-yarn.sh
(1)-help:输出这个命令参数
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -help rm
(2)-ls: 显示目录信息
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -ls /
(3)-mkdir:在HDFS上创建目录
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -mkdir -p /sanguo/shuguo
(4)-moveFromLocal:从本地剪切粘贴到HDFS
[atguigu@hadoop102 hadoop-2.7.2]$ touch kongming.txt
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -moveFromLocal ./kongming.txt /sanguo/shuguo
(5)-appendToFile:追加一个文件到已经存在的文件末尾
[atguigu@hadoop102 hadoop-2.7.2]$ touch liubei.txt
[atguigu@hadoop102 hadoop-2.7.2]$ vi liubei.txt
输入
san gu mao lu
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -appendToFile liubei.txt /sanguo/shuguo/kongming.txt
(6)-cat:显示文件内容
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -cat /sanguo/shuguo/kongming.txt
(7)-chgrp 、-chmod、-chown:Linux文件系统中的用法一样,修改文件所属权限
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -chmod 666 /sanguo/shuguo/kongming.txt
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -chown atguigu:atguigu /sanguo/shuguo/kongming.txt
(8)-copyFromLocal:从本地文件系统中拷贝文件到HDFS路径去
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -copyFromLocal README.txt /
(9)-copyToLocal:从HDFS拷贝到本地
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -copyToLocal /sanguo/shuguo/kongming.txt ./
(10)-cp :从HDFS的一个路径拷贝到HDFS的另一个路径
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -cp /sanguo/shuguo/kongming.txt /zhuge.txt
(11)-mv:在HDFS目录中移动文件
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -mv /zhuge.txt /sanguo/shuguo/
(12)-get:等同于copyToLocal,就是从HDFS下载文件到本地
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -get /sanguo/shuguo/kongming.txt ./
(13)-getmerge:合并下载多个文件,比如HDFS的目录 /user/atguigu/test下有多个文件:log.1, log.2,log.3,...
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -getmerge /user/atguigu/test/* ./zaiyiqi.txt
(14)-put:等同于copyFromLocal
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -put ./zaiyiqi.txt /user/atguigu/test/
(15)-tail:显示一个文件的末尾
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -tail /sanguo/shuguo/kongming.txt
(16)-rm:删除文件或文件夹
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -rm /user/atguigu/test/jinlian2.txt
(17)-rmdir:删除空目录
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -mkdir /test
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -rmdir /test
(18)-du统计文件夹的大小信息
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -du -s -h /user/atguigu/test
2.7 K /user/atguigu/test
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -du -h /user/atguigu/test
1.3 K /user/atguigu/test/README.txt
15 /user/atguigu/test/jinlian.txt
1.4 K /user/atguigu/test/zaiyiqi.txt
(19)-setrep:设置HDFS中文件的副本数量
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -setrep 10 /sanguo/shuguo/kongming.txt
图3-3 HDFS副本数量
这里设置的副本数只是记录在NameNode的元数据中,是否真的会有这么多副本,还得看DataNode的数量。因为目前只有3台设备,最多也就3个副本,只有节点数的增加到10台时,副本数才能达到10。
- 根据自己电脑的操作系统拷贝对应的编译后的hadoop jar包到非中文路径(例如:D:\Develop\hadoop-2.7.2),如图3-4所示。
图3-4 编译后的hadoop jar包
- 配置HADOOP_HOME环境变量,如图3-5所示。
图3-5 配置HADOOP_HOME环境变量
- 配置Path环境变量,如图3-6所示。
图3-6 配置Path环境变量
-
创建一个Maven工程HdfsClientDemo
-
导入相应的依赖坐标+日志添加
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>RELEASE</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-core</artifactId>
<version>2.8.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.7.2</version>
</dependency>
<dependency>
<groupId>jdk.tools</groupId>
<artifactId>jdk.tools</artifactId>
<version>1.8</version>
<scope>system</scope>
<systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>
</dependency>
</dependencies>
注意:如果Eclipse/Idea打印不出日志,在控制台上只显示
1.log4j:WARN No appenders could be found for logger (org.apache.hadoop.util.Shell).
2.log4j:WARN Please initialize the log4j system properly.
3.log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
需要在项目的src/main/resources目录下,新建一个文件,命名为“log4j.properties”,在文件中填入
log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
-
创建包名:com.atguigu.hdfs
-
创建HdfsClient类
public class HdfsClient{
@Test
public void testMkdirs() throws IOException, InterruptedException, URISyntaxException{
// 1 获取文件系统
Configuration configuration = new Configuration();
// 配置在集群上运行
// configuration.set("fs.defaultFS", "hdfs://hadoop102:9000");
// FileSystem fs = FileSystem.get(configuration);
FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:9000"), configuration, "atguigu");
// 2 创建目录
fs.mkdirs(new Path("/1108/daxian/banzhang"));
// 3 关闭资源
fs.close();
}}
- 执行程序
运行时需要配置用户名称,如图3-7所示
图3-7 配置用户名称
客户端去操作HDFS时,是有一个用户身份的。默认情况下,HDFS客户端API会从JVM中获取一个参数来作为自己的用户身份:-DHADOOP_USER_NAME=atguigu,atguigu为用户名称。
1.编写源代码
@Test
public void testCopyFromLocalFile() throws IOException, InterruptedException, URISyntaxException {
// 1 获取文件系统
Configuration configuration = new Configuration();
configuration.set("dfs.replication", "2");
FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:9000"), configuration, "atguigu"); // 2 上传文件
fs.copyFromLocalFile(new Path("e:/banzhang.txt"), new Path("/banzhang.txt"));
// 3 关闭资源
fs.close();
System.out.println("over");
}
2.将hdfs-site.xml拷贝到项目的根目录下
<?xml version="1.0" encoding="UTF-8"?><?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
</configuration>
3.参数优先级
参数优先级排序:
(1)客户端代码中设置的值
(2)ClassPath下的用户自定义配置文件
(3)然后是服务器的默认配置
@Test
public void testCopyToLocalFile() throws IOException, InterruptedException, URISyntaxException{
// 1 获取文件系统
Configuration configuration = new Configuration();
FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:9000"), configuration, "atguigu");
// 2 执行下载操作
// boolean delSrc 指是否将原文件删除
// Path src 指要下载的文件路径
// Path dst 指将文件下载到的路径
// boolean useRawLocalFileSystem 是否开启文件校验
fs.copyToLocalFile(false, new Path("/banzhang.txt"), new Path("e:/banhua.txt"), true);
// 3 关闭资源
fs.close();
}
@Test
public void testDelete() throws IOException, InterruptedException, URISyntaxException{
// 1 获取文件系统
Configuration configuration = new Configuration();
FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:9000"), configuration, "atguigu");
// 2 执行删除
fs.delete(new Path("/0508/"), true);
// 3 关闭资源
fs.close();
}
@Test
public void testRename() throws IOException, InterruptedException, URISyntaxException{
// 1 获取文件系统
Configuration configuration = new Configuration();
FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:9000"), configuration, "atguigu");
// 2 修改文件名称
fs.rename(new Path("/banzhang.txt"), new Path("/banhua.txt"));
// 3 关闭资源
fs.close();
}
查看文件名称、权限、长度、块信息
@Test
public void testListFiles() throws IOException, InterruptedException, URISyntaxException{
// 1获取文件系统
Configuration configuration = new Configuration();
FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:9000"), configuration, "atguigu");
// 2 获取文件详情
RemoteIterator<LocatedFileStatus> listFiles = fs.listFiles(new Path("/"), true);
while(listFiles.hasNext()){
LocatedFileStatus status = listFiles.next();
// 输出详情
// 文件名称
System.out.println(status.getPath().getName());
// 长度
System.out.println(status.getLen());
// 权限
System.out.println(status.getPermission());
// 分组
System.out.println(status.getGroup());
// 获取存储的块信息
BlockLocation[] blockLocations = status.getBlockLocations();
for (BlockLocation blockLocation : blockLocations) {
// 获取块存储的主机节点
String[] hosts = blockLocation.getHosts();
for (String host : hosts) {
System.out.println(host);
}
}
System.out.println("-----------班长的分割线----------");
}
// 3 关闭资源
fs.close();
}
@Test
public void testListStatus() throws IOException, InterruptedException, URISyntaxException{
// 1 获取文件配置信息
Configuration configuration = new Configuration();
FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:9000"), configuration, "atguigu");
// 2 判断是文件还是文件夹
FileStatus[] listStatus = fs.listStatus(new Path("/"));
for (FileStatus fileStatus : listStatus) {
// 如果是文件
if (fileStatus.isFile()) {
System.out.println("f:"+fileStatus.getPath().getName());
}else {
System.out.println("d:"+fileStatus.getPath().getName());
}
}
// 3 关闭资源
fs.close();
}
上面我们学的API操作HDFS系统都是框架封装好的。那么如果我们想自己实现上述API的操作该怎么实现呢?
我们可以采用IO流的方式实现数据的上传和下载。
1.需求:把本地e盘上的banhua.txt文件上传到HDFS根目录
2.编写代码
@Test
public void putFileToHDFS() throws IOException, InterruptedException, URISyntaxException {
// 1 获取文件系统
Configuration configuration = new Configuration();
FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:9000"), configuration, "atguigu");
// 2 创建输入流
FileInputStream fis = new FileInputStream(new File("e:/banhua.txt"));
// 3 获取输出流
FSDataOutputStream fos = fs.create(new Path("/banhua.txt"));
// 4 流对拷
IOUtils.copyBytes(fis, fos, configuration);
// 5 关闭资源
IOUtils.closeStream(fos);
IOUtils.closeStream(fis);
fs.close();
}
1.需求:从HDFS上下载banhua.txt文件到本地e盘上
2.编写代码
// 文件下载
@Test
public void getFileFromHDFS() throws IOException, InterruptedException, URISyntaxException{
// 1 获取文件系统
Configuration configuration = new Configuration();
FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:9000"), configuration, "atguigu");
// 2 获取输入流
FSDataInputStream fis = fs.open(new Path("/banhua.txt"));
// 3 获取输出流
FileOutputStream fos = new FileOutputStream(new File("e:/banhua.txt"));
// 4 流的对拷
IOUtils.copyBytes(fis, fos, configuration);
// 5 关闭资源
IOUtils.closeStream(fos);
IOUtils.closeStream(fis);
fs.close();
}
1.需求:分块读取HDFS上的大文件,比如根目录下的/hadoop-2.7.2.tar.gz
2.编写代码
(1)下载第一块
@Test
public void readFileSeek1() throws IOException, InterruptedException, URISyntaxException{
// 1 获取文件系统
Configuration configuration = new Configuration();
FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:9000"), configuration, "atguigu");
// 2 获取输入流
FSDataInputStream fis = fs.open(new Path("/hadoop-2.7.2.tar.gz"));
// 3 创建输出流
FileOutputStream fos = new FileOutputStream(new File("e:/hadoop-2.7.2.tar.gz.part1"));
// 4 流的拷贝
byte[] buf = new byte[1024];
for(int i =0 ; i < 1024 * 128; i++){
fis.read(buf);
fos.write(buf);
}
// 5关闭资源
IOUtils.closeStream(fis);
IOUtils.closeStream(fos);
fs.close();
}
(2)下载第二块
@Test
public void readFileSeek2() throws IOException, InterruptedException, URISyntaxException{
// 1 获取文件系统
Configuration configuration = new Configuration();
FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:9000"), configuration, "atguigu");
// 2 打开输入流
FSDataInputStream fis = fs.open(new Path("/hadoop-2.7.2.tar.gz"));
// 3 定位输入数据位置
fis.seek(1024*1024*128);
// 4 创建输出流
FileOutputStream fos = new FileOutputStream(new File("e:/hadoop-2.7.2.tar.gz.part2"));
// 5 流的对拷
IOUtils.copyBytes(fis, fos, configuration);
// 6 关闭资源
IOUtils.closeStream(fis);
IOUtils.closeStream(fos);
}
(3)合并文件
在Window命令窗口中进入到目录E:\,然后执行如下命令,对数据进行合并
type hadoop-2.7.2.tar.gz.part2 >> hadoop-2.7.2.tar.gz.part1
合并完成后,将hadoop-2.7.2.tar.gz.part1重新命名为hadoop-2.7.2.tar.gz。解压发现该tar包非常完整。
HDFS写数据流程,如图3-8所示。
图3-8 配置用户名称
1)客户端通过Distributed FileSystem模块向NameNode请求上传文件,NameNode检查目标文件是否已存在,父目录是否存在。
2)NameNode返回是否可以上传。
3)客户端请求第一个 Block上传到哪几个DataNode服务器上。
4)NameNode返回3个DataNode节点,分别为dn1、dn2、dn3。
5)客户端通过FSDataOutputStream模块请求dn1上传数据,dn1收到请求会继续调用dn2,然后dn2调用dn3,将这个通信管道建立完成。
6)dn1、dn2、dn3逐级应答客户端。
7)客户端开始往dn1上传第一个Block(先从磁盘读取数据放到一个本地内存缓存),以Packet为单位,dn1收到一个Packet就会传给dn2,dn2传给dn3;dn1每传一个packet会放入一个应答队列等待应答。
8)当一个Block传输完成之后,客户端再次请求NameNode上传第二个Block的服务器。(重复执行3-7步)。
在HDFS写数据的过程中,NameNode会选择距离待上传数据最近距离的DataNode接收数据。那么这个最近距离怎么计算呢?
节点距离:两个节点到达最近的共同祖先的距离总和。
图3-9 网络拓扑概念
例如,假设有数据中心d1机架r1中的节点n1。该节点可以表示为/d1/r1/n1。利用这种标记,这里给出四种距离描述,如图3-9所示。
大家算一算每两个节点之间的距离,如图3-10所示。
- 官方ip地址
机架感知说明
For the common case, when the replication factor is three, HDFS’s placement policy is to put one replica on one node in the local rack, another on a different node in the local rack, and the last on a different node in a different rack.
- Hadoop2.7.2副本节点选择
HDFS的读数据流程,如图3-13所示。
图3-13 HDFS读数据流程
1)客户端通过Distributed FileSystem向NameNode请求下载文件,NameNode通过查询元数据,找到文件块所在的DataNode地址。
2)挑选一台DataNode(就近原则,然后随机)服务器,请求读取数据。
3)DataNode开始传输数据给客户端(从磁盘里面读取数据输入流,以Packet为单位来做校验)。
4)客户端以Packet为单位接收,先在本地缓存,然后写入目标文件。
思考:NameNode中的元数据是存储在哪里的?
首先,我们做个假设,如果存储在NameNode节点的磁盘中,因为经常需要进行随机访问,还有响应客户请求,必然是效率过低。因此,元数据需要存放在内存中。但如果只存在内存中,一旦断电,元数据丢失,整个集群就无法工作了。因此产生在磁盘中备份元数据的
FsImage
。 这样又会带来新的问题,当在内存中的元数据更新时,如果同时更新FsImage,就会导致效率过低,但如果不更新,就会发生一致性问题,一旦NameNode节点断电,就会产生数据丢失。因此,引入
Edits
文件(只进行追加
操作,效率很高)。每当元数据有更新或者添加元数据时,修改内存中的元数据并追加到Edits中。这样,一旦NameNode节点断电,可以通过FsImage和Edits的合并,合成元数据。 但是,如果长时间添加数据到Edits中,会导致该文件数据过大,效率降低,而且一旦断电,恢复元数据需要的时间过长。因此,需要定期进行FsImage和Edits的合并,如果这个操作由NameNode节点完成,又会效率过低。因此,引入一个新的节点SecondaryNamenode,专门用于FsImage和Edits的合并。
NN和2NN工作机制,如图3-14所示。
- 第一阶段:NameNode启动
(1)第一次启动NameNode格式化后,创建Fsimage和Edits文件。如果不是第一次启动,直接加载编辑日志和镜像文件到内存。
(2)客户端对元数据进行增删改的请求。
(3)NameNode记录操作日志,更新滚动日志。
(4)NameNode在内存中对数据进行增删改。
- 第二阶段:Secondary NameNode工作
(1)Secondary NameNode询问NameNode是否需要CheckPoint。直接带回NameNode是否检查结果。
(2)Secondary NameNode请求执行CheckPoint。
(3)NameNode滚动正在写的Edits日志。
(4)将滚动前的编辑日志和镜像文件拷贝到Secondary NameNode。
(5)Secondary NameNode加载编辑日志和镜像文件到内存,并合并。
(6)生成新的镜像文件fsimage.chkpoint。
(7)拷贝fsimage.chkpoint到NameNode。
(8)NameNode将fsimage.chkpoint重新命名成fsimage。
NN和2NN工作机制详解:
Fsimage:NameNode内存中元数据序列化后形成的文件。
Edits:记录客户端更新元数据信息的每一步操作(可通过Edits运算出元数据)。NameNode启动时,先滚动Edits并生成一个空的edits.inprogress,然后加载Edits和Fsimage到内存中,此时NameNode内存就持有最新的元数据信息。Client开始对NameNode发送元数据的增删改的请求,这些请求的操作首先会被记录到edits.inprogress中(查询元数据的操作不会被记录在Edits中,因为查询操作不会更改元数据信息),如果此时NameNode挂掉,重启后会从Edits中读取元数据的信息。然后,NameNode会在内存中执行元数据的增删改的操作。由于Edits中记录的操作会越来越多,Edits文件会越来越大,导致NameNode在启动加载Edits时会很慢,所以需要对Edits和Fsimage进行合并(所谓合并,就是将Edits和Fsimage加载到内存中,照着Edits中的操作一步步执行,最终形成新的Fsimage)。
SecondaryNameNode的作用就是帮助NameNode进行Edits和Fsimage的合并工作。SecondaryNameNode首先会询问NameNode是否需要CheckPoint(触发CheckPoint需要满足两个条件中的任意一个,定时时间到和Edits中数据写满了)。直接带回NameNode是否检查结果。SecondaryNameNode执行CheckPoint操作,首先会让NameNode滚动Edits并生成一个空的edits.inprogress,滚动Edits的目的是给Edits打个标记,以后所有新的操作都写入edits.inprogress,其他未合并的Edits和Fsimage会拷贝到SecondaryNameNode的本地,然后将拷贝的Edits和Fsimage加载到内存中进行合并,生成fsimage.chkpoint,然后将fsimage.chkpoint拷贝给NameNode,重命名为Fsimage后替换掉原来的Fsimage。NameNode在启动时就只需要加载之前未合并的Edits和Fsimage即可,因为合并过的Edits中的元数据信息已经被记录在Fsimage中。
- 概念
NameNode被格式化之后,将在/opt/module/hadoop-2.7.2/dataltmp/dfs/name/current目录中产生如下文件
fsimage_00000000000000000000
fsimage_00000000000000000000.md5
seen_txid
VERSION
(1) Fsimage文件: HDFS文件系统元数据的一个永久性的检查点
,其中包含HDFS文件系统的所有目录和文件inode的序列化信息。
(2)Edis文件:存放HDFS文件系统的所有更新操作的路径,文件系统客户端执行的所有写操作首先会被记录到Edits文件中。
( 3 ) seen_txid文件保存的是一个数字,就是最后一个edits_的数字
(4)每次NameNode启动的时候都会将Fsimage文件读入内存,加载Edits里面的更新操作,保证内存中的元数据信息是最新的、同步的,可以看成NameNode启动的时候就将Fsimage和Edits文件进行了合并。
- oiv查看Fsimage文件
(1)查看oiv和oev命令
[atguigu@hadoop102 current]$ hdfs
oiv apply the offline fsimage viewer to an fsimage
oev apply the offline edits viewer to an edits file
(2)基本语法
hdfs oiv -p 文件类型 -i镜像文件 -o 转换后文件输出路径
(3)案例实操
[atguigu@hadoop102 current]$ pwd
/opt/module/hadoop-2.7.2/data/tmp/dfs/name/current
[atguigu@hadoop102 current]$ hdfs oiv -p XML -i fsimage_0000000000000000025 -o /opt/module/hadoop-2.7.2/fsimage.xml
[atguigu@hadoop102 current]$ cat /opt/module/hadoop-2.7.2/fsimage.xml
将显示的xml文件内容拷贝到Eclipse中创建的xml文件中,并格式化。部分显示结果如下。
<inode>
<id>16386</id>
<type>DIRECTORY</type>
<name>user</name>
<mtime>1512722284477</mtime>
<permission>atguigu:supergroup:rwxr-xr-x</permission>
<nsquota>-1</nsquota>
<dsquota>-1</dsquota>
</inode>
<inode>
<id>16387</id>
<type>DIRECTORY</type>
<name>atguigu</name>
<mtime>1512790549080</mtime>
<permission>atguigu:supergroup:rwxr-xr-x</permission>
<nsquota>-1</nsquota>
<dsquota>-1</dsquota>
</inode>
<inode>
<id>16389</id>
<type>FILE</type>
<name>wc.input</name>
<replication>3</replication>
<mtime>1512722322219</mtime>
<atime>1512722321610</atime>
<perferredBlockSize>134217728</perferredBlockSize>
<permission>atguigu:supergroup:rw-r--r--</permission>
<blocks>
<block>
<id>1073741825</id>
<genstamp>1001</genstamp>
<numBytes>59</numBytes>
</block>
</blocks>
</inode >
思考:可以看出,Fsimage中没有记录块所对应DataNode,为什么?
在集群启动后,要求DataNode上报数据块信息,并间隔一段时间后再次上报。
- oev查看Edits文件
(1)基本语法
hdfs oev -p 文件类型 -i编辑日志 -o 转换后文件输出路径
(2)案例实操
[atguigu@hadoop102 current]$ hdfs oev -p XML -i edits_0000000000000000012-0000000000000000013 -o /opt/module/hadoop-2.7.2/edits.xml
[atguigu@hadoop102 current]$ cat /opt/module/hadoop-2.7.2/edits.xml
将显示的xml文件内容拷贝到Eclipse中创建的xml文件中,并格式化。显示结果如下。
<?xml version="1.0" encoding="UTF-8"?>
<EDITS>
<EDITS_VERSION>-63</EDITS_VERSION>
<RECORD>
<OPCODE>OP_START_LOG_SEGMENT</OPCODE>
<DATA>
<TXID>129</TXID>
</DATA>
</RECORD>
<RECORD>
<OPCODE>OP_ADD</OPCODE>
<DATA>
<TXID>130</TXID>
<LENGTH>0</LENGTH>
<INODEID>16407</INODEID>
<PATH>/hello7.txt</PATH>
<REPLICATION>2</REPLICATION>
<MTIME>1512943607866</MTIME>
<ATIME>1512943607866</ATIME>
<BLOCKSIZE>134217728</BLOCKSIZE>
<CLIENT_NAME>DFSClient_NONMAPREDUCE_-1544295051_1</CLIENT_NAME>
<CLIENT_MACHINE>192.168.1.5</CLIENT_MACHINE>
<OVERWRITE>true</OVERWRITE>
<PERMISSION_STATUS>
<USERNAME>atguigu</USERNAME>
<GROUPNAME>supergroup</GROUPNAME>
<MODE>420</MODE>
</PERMISSION_STATUS>
<RPC_CLIENTID>908eafd4-9aec-4288-96f1-e8011d181561</RPC_CLIENTID>
<RPC_CALLID>0</RPC_CALLID>
</DATA>
</RECORD>
<RECORD>
<OPCODE>OP_ALLOCATE_BLOCK_ID</OPCODE>
<DATA>
<TXID>131</TXID>
<BLOCK_ID>1073741839</BLOCK_ID>
</DATA>
</RECORD>
<RECORD>
<OPCODE>OP_SET_GENSTAMP_V2</OPCODE>
<DATA>
<TXID>132</TXID>
<GENSTAMPV2>1016</GENSTAMPV2>
</DATA>
</RECORD>
<RECORD>
<OPCODE>OP_ADD_BLOCK</OPCODE>
<DATA>
<TXID>133</TXID>
<PATH>/hello7.txt</PATH>
<BLOCK>
<BLOCK_ID>1073741839</BLOCK_ID>
<NUM_BYTES>0</NUM_BYTES>
<GENSTAMP>1016</GENSTAMP>
</BLOCK>
<RPC_CLIENTID></RPC_CLIENTID>
<RPC_CALLID>-2</RPC_CALLID>
</DATA>
</RECORD>
<RECORD>
<OPCODE>OP_CLOSE</OPCODE>
<DATA>
<TXID>134</TXID>
<LENGTH>0</LENGTH>
<INODEID>0</INODEID>
<PATH>/hello7.txt</PATH>
<REPLICATION>2</REPLICATION>
<MTIME>1512943608761</MTIME>
<ATIME>1512943607866</ATIME>
<BLOCKSIZE>134217728</BLOCKSIZE>
<CLIENT_NAME></CLIENT_NAME>
<CLIENT_MACHINE></CLIENT_MACHINE>
<OVERWRITE>false</OVERWRITE>
<BLOCK>
<BLOCK_ID>1073741839</BLOCK_ID>
<NUM_BYTES>25</NUM_BYTES>
<GENSTAMP>1016</GENSTAMP>
</BLOCK>
<PERMISSION_STATUS>
<USERNAME>atguigu</USERNAME>
<GROUPNAME>supergroup</GROUPNAME>
<MODE>420</MODE>
</PERMISSION_STATUS>
</DATA>
</RECORD>
</EDITS >
思考:NameNode如何确定下次开机启动的时候合并哪些Edits?
(1)通常情况下,SecondaryNameNode每隔一小时执行一次。
[hdfs-default.xml]
<property>
<name>dfs.namenode.checkpoint.period</name>
<value>3600</value>
</property>
(2)一分钟检查一次操作次数,3当操作次数达到1百万时,SecondaryNameNode执行一次。
<property>
<name>dfs.namenode.checkpoint.txns</name>
<value>1000000</value>
<description>操作动作次数</description>
</property>
<property>
<name>dfs.namenode.checkpoint.check.period</name>
<value>60</value>
<description> 1分钟检查一次操作次数</description>
</property >
NameNode故障后,可以采用如下两种方法恢复数据。
方法一:将SecondaryNameNode中数据拷贝到NameNode存储数据的目录;
-
kill -9 NameNode进程
-
删除NameNode存储的数据(/opt/module/hadoop-2.7.2/data/tmp/dfs/name)
[atguigu@hadoop102 hadoop-2.7.2]$ rm -rf /opt/module/hadoop-2.7.2/data/tmp/dfs/name/*
- 拷贝SecondaryNameNode中数据到原NameNode存储数据目录
[atguigu@hadoop102 dfs]$ scp -r atguigu@hadoop104:/opt/module/hadoop-2.7.2/data/tmp/dfs/namesecondary/* ./name/
- 重新启动NameNode
[atguigu@hadoop102 hadoop-2.7.2]$ sbin/hadoop-daemon.sh start namenode
方法二:使用-importCheckpoint选项启动NameNode守护进程,从而将Secondary NameNode中数据拷贝到NameNode目录中
- 修改hdfs-site.xml中的
<property>
<name>dfs.namenode.checkpoint.period</name>
<value>120</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>/opt/module/hadoop-2.7.2/data/tmp/dfs/name</value>
</property>
-
kill -9 NameNode进程
-
删除NameNode存储的数据(/opt/module/hadoop-2.7.2/data/tmp/dfs/name)
[atguigu@hadoop102 hadoop-2.7.2]$ rm -rf /opt/module/hadoop-2.7.2/data/tmp/dfs/name/*
- 如果SecondaryNameNode不和NameNode在一个主机节点上,需要将SecondaryNameNode存储数据的目录拷贝到NameNode存储数据的平级目录,并删除in_use.lock文件
[atguigu@hadoop102 dfs]$ scp -r atguigu@hadoop104:/opt/module/hadoop-2.7.2/data/tmp/dfs/namesecondary ./
[atguigu@hadoop102 namesecondary]$ rm -rf in_use.lock
[atguigu@hadoop102 dfs]$ pwd
/opt/module/hadoop-2.7.2/data/tmp/dfs
[atguigu@hadoop102 dfs]$ ls
data name namesecondary
- 导入检查点数据(等待一会ctrl+c结束掉)
[atguigu@hadoop102 hadoop-2.7.2]$ bin/hdfs namenode -importCheckpoint
- 启动NameNode
[atguigu@hadoop102 hadoop-2.7.2]$ sbin/hadoop-daemon.sh start namenode
- NaneNode启动 NameNode启动时,首先将镜像文件(Fsimage)载入内存,并执行编辑日志〈Edits)中的各项操作。旦在内存中成功建立文件系统元数据的映像,则创建一个新的Fsimage文件和一个空的编辑日志。此时NameNode开始监听DataNode请求。这个过程期间,NameNode一直运行在安全模式,即NameNode的文件系统对于客户端来说是
只读
的。- DataNode启动 系统中的数据块的位置并不是由NameNode维护的,而是以块列表的形式存储在DataNode中。在系统的正常操作期间,NameNode会在内存中保留所有块位置的映射信息。在安全模式下,各个DataNode会向NameNode发送最新的块列表信息,NameNode了解到足够多的块位置信息之后,即可高效运行文件系统。
- 安全模式退出判断 如果满足“最小副本条件",NameNode会在30秒钟之后就退出安全模式。所谓的最小副本条件指的是在整个文件系统中99.9%的块满足最小副本级别(默认值: dfs.replication.min=1)。在启动一个刚刚格式化的HDFS集群时,因为系统中还没有任何块,所以NameNode不会进入安全模式。
集群处于安全模式,不能执行重要操作(写操作)。集群启动完成后,自动退出安全模式。
(1)bin/hdfs dfsadmin -safemode get (功能描述:查看安全模式状态)
(2)bin/hdfs dfsadmin -safemode enter (功能描述:进入安全模式状态)
(3)bin/hdfs dfsadmin -safemode leave (功能描述:离开安全模式状态)
(4)bin/hdfs dfsadmin -safemode wait (功能描述:等待安全模式状态)
模拟等待安全模式
(1)查看当前模式
[atguigu@hadoop102 hadoop-2.7.2]$ hdfs dfsadmin -safemode get
Safe mode is OFF
(2)先进入安全模式
[atguigu@hadoop102 hadoop-2.7.2]$ bin/hdfs dfsadmin -safemode enter
(3)创建并执行下面的脚本
在/opt/module/hadoop-2.7.2路径上,编辑一个脚本safemode.sh
[atguigu@hadoop102 hadoop-2.7.2]$ touch safemode.sh
[atguigu@hadoop102 hadoop-2.7.2]$ vim safemode.sh
#!/bin/bash
hdfs dfsadmin -safemode wait
hdfs dfs -put /opt/module/hadoop-2.7.2/README.txt /
[atguigu@hadoop102 hadoop-2.7.2]$ chmod 777 safemode.sh
[atguigu@hadoop102 hadoop-2.7.2]$ ./safemode.sh
(4)再打开一个窗口,执行
[atguigu@hadoop102 hadoop-2.7.2]$ bin/hdfs dfsadmin -safemode leave
(5)观察
(a)再观察上一个窗口
Safe mode is OFF
(b)HDFS集群上已经有上传的数据了。
-
NameNode的本地目录可以配置成多个,且每个目录存放内容相同,增加了可靠性
-
具体配置如下
(1)在hdfs-site.xml文件中增加如下内容
<property>
<name>dfs.namenode.name.dir</name>
<value>file:///${hadoop.tmp.dir}/dfs/name1,file:///${hadoop.tmp.dir}/dfs/name2</value>
</property>
(2)停止集群,删除data和logs中所有数据。
[atguigu@hadoop102 hadoop-2.7.2]$ rm -rf data/ logs/
[atguigu@hadoop103 hadoop-2.7.2]$ rm -rf data/ logs/
[atguigu@hadoop104 hadoop-2.7.2]$ rm -rf data/ logs/
(3)格式化集群并启动。
[atguigu@hadoop102 hadoop-2.7.2]$ bin/hdfs namenode –format
[atguigu@hadoop102 hadoop-2.7.2]$ sbin/start-dfs.h
(4)查看结果
[atguigu@hadoop102 dfs]$ ll
总用量 12
drwx------. 3 atguigu atguigu 4096 12月 11 08:03 data
drwxrwxr-x. 3 atguigu atguigu 4096 12月 11 08:03 name1
drwxrwxr-x. 3 atguigu atguigu 4096 12月 11 08:03 name2
DataNode工作机制,如图3-15所示。
图3-15 DataNode工作机制
1)一个数据块在DataNode上以文件形式存储在磁盘上,包括两个文件,一个是数据本身,一个是元数据包括数据块的长度,块数据的校验和,以及时间戳。
2)DataNode启动后向NameNode注册,通过后,周期性(1小时)的向NameNode上报所有的块信息。
3)心跳是每3秒一次,心跳返回结果带有NameNode给该DataNode的命令如复制块数据到另一台机器,或删除某个数据块。如果超过10分钟没有收到某个DataNode的心跳,则认为该节点不可用。
4)集群运行中可以安全加入和退出一些机器。
思考:如果电脑磁盘里面存储的数据是控制高铁信号灯的红灯信号(1)和绿灯信号(0),但是存储该数据的磁盘坏了,一直显示是绿灯,是否很危险?同理DataNode节点上的数据损坏了,却没有发现,是否也很危险,那么如何解决呢?
如下是DataNode节点保证数据完整性
的方法。
1)当DataNode读取Block的时候,它会计算CheckSum。
2)如果计算后的CheckSum,与Block创建时值不一样,说明Block已经损坏。
3)Client读取其他DataNode上的Block。
4)DataNode在其文件创建后周期验证CheckSum,如图3-16所示。
需要注意的是hdfs-site.xml 配置文件中的heartbeat.recheck.interval的单位为毫秒,dfs.heartbeat.interval的单位为秒。
<property>
<name>dfs.namenode.heartbeat.recheck-interval</name>
<value>300000</value>
</property>
<property>
<name>dfs.heartbeat.interval</name>
<value>3</value>
</property>
- 需求
随着公司业务的增长,数据量越来越大,原有的数据节点的容量已经不能满足存储数据的需求,需要在原有集群基础上动态添加新的数据节点
。
- 环境准备
(1)在hadoop104主机上再克隆一台hadoop105主机
(2)修改IP地址和主机名称
(3)删除原来HDFS文件系统留存的文件(/opt/module/hadoop-2.7.2/data和log)
(4)source一下配置文件
[atguigu@hadoop105 hadoop-2.7.2]$ source /etc/profile
- 服役新节点具体步骤
(1)直接启动DataNode
,即可关联到集群
[atguigu@hadoop105 hadoop-2.7.2]$ sbin/hadoop-daemon.sh start datanode
[atguigu@hadoop105 hadoop-2.7.2]$ sbin/yarn-daemon.sh start nodemanager
(2)在hadoop105上上传文件
[atguigu@hadoop105 hadoop-2.7.2]$ hadoop fs -put /opt/module/hadoop-2.7.2/LICENSE.txt /
(3)如果数据不均衡,可以用命令实现集群的再平衡
[atguigu@hadoop102 sbin]$ ./start-balancer.sh
starting balancer, logging to /opt/module/hadoop-2.7.2/logs/hadoop-atguigu-balancer-hadoop102.out
Time Stamp Iteration# Bytes Already Moved Bytes Left To Move Bytes Being Moved
添加到白名单
的主机节点,都允许访问NameNode,不在白名单的主机节点,都会被退出。
配置白名单的具体步骤如下:
(1)在NameNode的/opt/module/hadoop-2.7.2/etc/hadoop目录下创建dfs.hosts文件
[atguigu@hadoop102 hadoop]$ pwd
/opt/module/hadoop-2.7.2/etc/hadoop
[atguigu@hadoop102 hadoop]$ touch dfs.hosts
[atguigu@hadoop102 hadoop]$ vi dfs.hosts
添加如下主机名称(不添加hadoop105)
hadoop102
hadoop103
hadoop104
(2)在NameNode的hdfs-site.xml配置文件中增加dfs.hosts属性
<property>
<name>dfs.hosts</name>
<value>/opt/module/hadoop-2.7.2/etc/hadoop/dfs.hosts</value>
</property>
(3)配置文件分发
[atguigu@hadoop102 hadoop]$ xsync hdfs-site.xml
(4)刷新NameNode
[atguigu@hadoop102 hadoop-2.7.2]$ hdfs dfsadmin -refreshNodes
Refresh nodes successful
(5)更新ResourceManager节点
[atguigu@hadoop102 hadoop-2.7.2]$ yarn rmadmin -refreshNodes
17/06/24 14:17:11 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.1.103:8033
(6)在web浏览器上查看
- 如果数据不均衡,可以用命令实现集群的再平衡
[atguigu@hadoop102 sbin]$ ./start-balancer.sh
starting balancer, logging to /opt/module/hadoop-2.7.2/logs/hadoop-atguigu-balancer-hadoop102.out
Time Stamp Iteration# Bytes Already Moved Bytes Left To Move Bytes Being Moved
在黑名单上面的主机都会被强制退出。
1.在NameNode的/opt/module/hadoop-2.7.2/etc/hadoop目录下创建dfs.hosts.exclude文件
[atguigu@hadoop102 hadoop]$ pwd
/opt/module/hadoop-2.7.2/etc/hadoop
[atguigu@hadoop102 hadoop]$ touch dfs.hosts.exclude
[atguigu@hadoop102 hadoop]$ vi dfs.hosts.exclude
添加如下主机名称(要退役的节点)
hadoop105
2.在NameNode的hdfs-site.xml配置文件中增加dfs.hosts.exclude属性
<property>
<name>dfs.hosts.exclude</name>
<value>/opt/module/hadoop-2.7.2/etc/hadoop/dfs.hosts.exclude</value>
</property>
3.刷新NameNode、刷新ResourceManager
[atguigu@hadoop102 hadoop-2.7.2]$ hdfs dfsadmin -refreshNodes
Refresh nodes successful
[atguigu@hadoop102 hadoop-2.7.2]$ yarn rmadmin -refreshNodes
17/06/24 14:55:56 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.1.103:8033
4.检查Web浏览器,退役节点的状态为decommission in progress(退役中),说明数据节点正在复制块到其他节点,如图3-17所示
5.等待退役节点状态为decommissioned(所有块已经复制完成),停止该节点及节点资源管理器。注意:如果副本数是3,服役的节点小于等于3,是不能退役成功的,需要修改副本数后才能退役,如图3-18所示
[atguigu@hadoop105 hadoop-2.7.2]$ sbin/hadoop-daemon.sh stop datanode
stopping datanode
[atguigu@hadoop105 hadoop-2.7.2]$ sbin/yarn-daemon.sh stop nodemanager
stopping nodemanager
6.如果数据不均衡,可以用命令实现集群的再平衡
[atguigu@hadoop102 hadoop-2.7.2]$ sbin/start-balancer.sh
starting balancer, logging to /opt/module/hadoop-2.7.2/logs/hadoop-atguigu-balancer-hadoop102.out
Time Stamp Iteration# Bytes Already Moved Bytes Left To Move Bytes Being Moved
注意:不允许白名单和黑名单中同时出现同一个主机名称。
1.DataNode也可以配置成多个目录,每个目录存储的数据不一样。即:数据不是副本
2.具体配置如下 hdfs-site.xml
<property>
<name>dfs.datanode.data.dir</name>
<value>file:///${hadoop.tmp.dir}/dfs/data1,file:///${hadoop.tmp.dir}/dfs/data2</value>
</property>
1.scp实现两个远程主机之间的文件复制
scp -r hello.txt root@hadoop103:/user/atguigu/hello.txt // 推 push
scp -r root@hadoop103:/user/atguigu/hello.txt hello.txt // 拉 pull
scp -r root@hadoop103:/user/atguigu/hello.txt root@hadoop104:/user/atguigu //是通过本地主机中转实现两个远程主机的文件复制;如果在两个远程主机之间ssh没有配置的情况下可以使用该方式。
2.采用distcp命令实现两个Hadoop集群之间的递归数据复制
[atguigu@hadoop102 hadoop-2.7.2]$ bin/hadoop distcp
hdfs://haoop102:9000/user/atguigu/hello.txt hdfs://hadoop103:9000/user/atguigu/hello.txt
3.案例实操
(1)需要启动YARN进程
[atguigu@hadoop102 hadoop-2.7.2]$ start-yarn.sh
(2)归档文件
把/user/atguigu/input目录里面的所有文件归档成一个叫input.har的归档文件,并把归档后文件存储到/user/atguigu/output路径下。
[atguigu@hadoop102 hadoop-2.7.2]$ bin/hadoop archive -archiveName input.har –p /user/atguigu/input /user/atguigu/output
(3)查看归档
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -lsr /user/atguigu/output/input.har
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -lsr har:///user/atguigu/output/input.har
(4)解归档文件
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -cp har:/// user/atguigu/output/input.har/* /user/atguigu
开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、备份等作用。
1.回收站参数设置及工作机制
2.启用回收站
修改core-site.xml,配置垃圾回收时间为600分钟。
<property>
<name>fs.trash.interval</name>
<value>600</value>
</property>
3.查看回收站
回收站在集群中的路径:/user/atguigu/.Trash/….
4.修改访问垃圾回收站用户名称
进入垃圾回收站用户名称,默认是dr.who,修改为atguigu用户
[core-site.xml]
<property>
<name>hadoop.http.staticuser.user</name>
<value>atguigu</value>
</property>
5.通过程序删除的文件不会经过回收站,需要调用moveToTrash()才进入回收站
Trash trash = New Trash(conf);
trash.moveToTrash(path);
6.恢复回收站数据
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -mv
/user/atguigu/.Trash/Current/user/atguigu/input /user/atguigu/input
7.清空回收站
[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -expunge
2.案例实操
(1)开启/禁用指定目录的快照功能
[atguigu@hadoop102 hadoop-2.7.2]$ hdfs dfsadmin -allowSnapshot /user/atguigu/input
[atguigu@hadoop102 hadoop-2.7.2]$ hdfs dfsadmin -disallowSnapshot /user/atguigu/input
(2)对目录创建快照
[atguigu@hadoop102 hadoop-2.7.2]$ hdfs dfs -createSnapshot /user/atguigu/input
通过web访问hdfs://hadoop102:50070/user/atguigu/input/.snapshot/s…..// 快照和源文件使用相同数据
[atguigu@hadoop102 hadoop-2.7.2]$ hdfs dfs -lsr /user/atguigu/input/.snapshot/
(3)指定名称创建快照
[atguigu@hadoop102 hadoop-2.7.2]$ hdfs dfs -createSnapshot /user/atguigu/input miao170508
(4)重命名快照
[atguigu@hadoop102 hadoop-2.7.2]$ hdfs dfs -renameSnapshot /user/atguigu/input/ miao170508 atguigu170508
(5)列出当前用户所有可快照目录
[atguigu@hadoop102 hadoop-2.7.2]$ hdfs lsSnapshottableDir
(6)比较两个快照目录的不同之处
[atguigu@hadoop102 hadoop-2.7.2]$ hdfs snapshotDiff
/user/atguigu/input/ . .snapshot/atguigu170508
(7)恢复快照
[atguigu@hadoop102 hadoop-2.7.2]$ hdfs dfs -cp
/user/atguigu/input/.snapshot/s20170708-134303.027 /user
1)所谓HA(High Available),即高可用(7*24小时不中断服务)。
2)实现高可用最关键的策略是消除单点故障
。HA严格来说应该分成各个组件的HA机制:HDFS的HA和YARN的HA。
3)Hadoop2.0之前,在HDFS集群中NameNode存在单点故障(SPOF)。
4)NameNode主要在以下两个方面影响HDFS集群
1.NameNode机器发生意外,如宕机,集群将无法使用,直到管理员重启
2.NameNode机器需要升级,包括软件、硬件升级,此时集群也将无法使用
HDFS HA功能通过配置Active/Standby两个NameNodes实现在集群中对NameNode的热备
来解决上述问题。如果出现故障,如机器崩溃或机器需要升级维护,这时可通过此种方式将NameNode很快的切换到另外一台机器。
通过双NameNode消除单点故障
- 元数据管理方式需要改变
内存中各自保存一份元数据;
Edits日志只有Active状态的NameNode节点可以做写操作;
两个NameNode都可以读取Edits;
共享的Edits放在一个共享存储中管理(qjournal和NFS两个主流实现);
- 需要一个状态管理功能模块
实现了一个zkfailover,常驻在每一个namenode所在的节点,每一个zkfailover负责监控自己所在NameNode节点,利用zk进行状态标识,当需要进行状态切换时,由zkfailover来负责切换,切换时需要防止brain split现象的发生。
-
必须保证两个NameNode之间能够ssh无密码登录
-
隔离(Fence),即同一时刻仅仅有一个NameNode对外提供服务
前面学习了使用命令hdfs haadmin -failover手动进行
故障转移
,在该模式下,即使现役NameNode已经失效,系统也不会自动从现役NameNode转移到待机NameNode,下面学习如何配置部署HA自动进行故障转移。自动故障转移为HDFS部署增加了两个新组件:ZooKeeper和ZKFailoverController(ZKFC)进程,如图3-20所示。ZooKeeper是维护少量协调数据,通知客户端这些数据的改变和监视客户端故障的高可用服务。HA的自动故障转移依赖于ZooKeeper的以下功能:
**1)故障检测:**集群中的每个NameNode在ZooKeeper中维护了一个持久会话,如果机器崩溃,ZooKeeper中的会话将终止,ZooKeeper通知另一个NameNode需要触发故障转移。
**2)现役NameNode选择:**ZooKeeper提供了一个简单的机制用于唯一的选择一个节点为active状态。如果目前现役NameNode崩溃,另一个节点可能从ZooKeeper获得特殊的排外锁以表明它应该成为现役NameNode。
ZKFC是自动故障转移中的另一个新组件,是ZooKeeper的客户端,也监视和管理NameNode的状态。每个运行NameNode的主机也运行了一个ZKFC进程,ZKFC负责:
1)健康监测:ZKFC使用一个健康检查命令定期地ping与之在相同主机的NameNode,只要该NameNode及时地回复健康状态,ZKFC认为该节点是健康的。如果该节点崩溃,冻结或进入不健康状态,健康监测器标识该节点为非健康的。
2)ZooKeeper会话管理:当本地NameNode是健康的,ZKFC保持一个在ZooKeeper中打开的会话。如果本地NameNode处于active状态,ZKFC也保持一个特殊的znode锁,该锁使用了ZooKeeper对短暂节点的支持,如果会话终止,锁节点将自动删除。
3)基于ZooKeeper的选择:如果本地NameNode是健康的,且ZKFC发现没有其它的节点当前持有znode锁,它将为自己获取该锁。如果成功,则它已经赢得了选择,并负责运行故障转移进程以使它的本地NameNode为Active。故障转移进程与前面描述的手动故障转移相似,首先如果必要保护之前的现役NameNode,然后本地NameNode转换为Active状态。
图3-20 HDFS-HA故障转移机制
-
修改IP
-
修改主机名及主机名和IP地址的映射
-
关闭防火墙
-
ssh免密登录
-
安装JDK,配置环境变量等
表3-1
hadoop102 | hadoop103 | hadoop104 |
---|---|---|
NameNode | NameNode | |
JournalNode | JournalNode | JournalNode |
DataNode | DataNode | DataNode |
ZK | ZK | ZK |
ResourceManager | ||
NodeManager | NodeManager | NodeManager |
- 集群规划
在hadoop102、hadoop103和hadoop104三个节点上部署Zookeeper。
- 解压安装
(1)解压Zookeeper安装包到/opt/module/目录下
[atguigu@hadoop102 software]$ tar -zxvf zookeeper-3.4.10.tar.gz -C /opt/module/
(2)在/opt/module/zookeeper-3.4.10/这个目录下创建zkData
mkdir -p zkData
(3)重命名/opt/module/zookeeper-3.4.10/conf这个目录下的zoo_sample.cfg为zoo.cfg
mv zoo_sample.cfg zoo.cfg
- 配置zoo.cfg文件
(1)具体配置
dataDir=/opt/module/zookeeper-3.4.10/zkData
#增加如下配置
#######################cluster##########################
server.2=hadoop102:2888:3888
server.3=hadoop103:2888:3888
server.4=hadoop104:2888:3888
(2)配置参数解读
Server.A=B:C:D。
A是一个数字,表示这个是第几号服务器;
B是这个服务器的IP地址;
C是这个服务器与集群中的Leader服务器交换信息的端口;
D是万一集群中的Leader服务器挂了,需要一个端口来重新进行选举,选出一个新的Leader,而这个端口就是用来执行选举时服务器相互通信的端口。
集群模式下配置一个文件myid,这个文件在dataDir目录下,这个文件里面有一个数据就是A的值,Zookeeper启动时读取此文件,拿到里面的数据与zoo.cfg里面的配置信息比较从而判断到底是哪个server。
- 集群操作
(1)在/opt/module/zookeeper-3.4.10/zkData目录下创建一个myid的文件
touch myid
添加myid文件,注意一定要在linux里面创建,在notepad++里面很可能乱码
(2)编辑myid文件
vi myid
#在文件中添加与server对应的编号:如2
(3)拷贝配置好的zookeeper到其他机器上
scp -r zookeeper-3.4.10/ [email protected]:/opt/app/
scp -r zookeeper-3.4.10/ [email protected]:/opt/app/
并分别修改myid文件中内容为3、4
(4)分别启动zookeeper
[root@hadoop102 zookeeper-3.4.10]# bin/zkServer.sh start
[root@hadoop103 zookeeper-3.4.10]# bin/zkServer.sh start
[root@hadoop104 zookeeper-3.4.10]# bin/zkServer.sh start
(5)查看状态
[root@hadoop102 zookeeper-3.4.10]# bin/zkServer.sh status
JMX enabled by default
Using config: /opt/module/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: follower
[root@hadoop103 zookeeper-3.4.10]# bin/zkServer.sh status
JMX enabled by default
Using config: /opt/module/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: leader
[root@hadoop104 zookeeper-3.4.5]# bin/zkServer.sh status
JMX enabled by default
Using config: /opt/module/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: follower
-
在opt目录下创建一个ha文件夹
mkdir ha
- 将/opt/app/下的 hadoop-2.7.2拷贝到/opt/ha目录下
cp -r hadoop-2.7.2/ /opt/ha/
- 配置hadoop-env.sh
export JAVA_HOME=/opt/module/jdk1.8.0_144
- 配置core-site.xml
<configuration>
<!-- 把两个NameNode)的地址组装成一个集群mycluster -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://mycluster</value>
</property>
<!-- 指定hadoop运行时产生文件的存储目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/ha/hadoop-2.7.2/data/tmp</value>
</property>
</configuration>
- 配置hdfs-site.xml
<configuration>
<!-- 完全分布式集群名称 -->
<property>
<name>dfs.nameservices</name>
<value>mycluster</value>
</property>
<!-- 集群中NameNode节点都有哪些 -->
<property>
<name>dfs.ha.namenodes.mycluster</name>
<value>nn1,nn2</value>
</property>
<!-- nn1的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.mycluster.nn1</name>
<value>hadoop102:9000</value>
</property>
<!-- nn2的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.mycluster.nn2</name>
<value>hadoop103:9000</value>
</property>
<!-- nn1的http通信地址 -->
<property>
<name>dfs.namenode.http-address.mycluster.nn1</name>
<value>hadoop102:50070</value>
</property>
<!-- nn2的http通信地址 -->
<property>
<name>dfs.namenode.http-address.mycluster.nn2</name>
<value>hadoop103:50070</value>
</property>
<!-- 指定NameNode元数据在JournalNode上的存放位置 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://hadoop102:8485;hadoop103:8485;hadoop104:8485/mycluster</value>
</property>
<!-- 配置隔离机制,即同一时刻只能有一台服务器对外响应 -->
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value> </property> <!-- 使用隔离机制时需要ssh无秘钥登录-->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/atguigu/.ssh/id_rsa</value>
</property>
<!-- 声明journalnode服务器存储目录-->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/opt/ha/hadoop-2.7.2/data/jn</value>
</property>
<!-- 关闭权限检查-->
<property>
<name>dfs.permissions.enable</name>
<value>false</value>
</property>
<!-- 访问代理类:client,mycluster,active配置失败自动切换实现方式-->
<property>
<name>dfs.client.failover.proxy.provider.mycluster</name><value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
</configuration>
- 拷贝配置好的hadoop环境到其他节点
- 在各个JournalNode节点上,输入以下命令启动journalnode服务
sbin/hadoop-daemon.sh start journalnode
- 在[nn1]上,对其进行格式化,并启动
bin/hdfs namenode -format
sbin/hadoop-daemon.sh start namenode
- 在[nn2]上,同步nn1的元数据信息
bin/hdfs namenode -bootstrapStandby
- 启动[nn2]
sbin/hadoop-daemon.sh start namenode
- 查看web页面显示,如图3-21,3-22所示
- 在[nn1]上,启动所有datanode
sbin/hadoop-daemons.sh start datanode
- 将[nn1]切换为Active
bin/hdfs haadmin -transitionToActive nn1
-
查看是否Active
bin/hdfs haadmin -getServiceState nn1
- 具体配置
(1)在hdfs-site.xml中增加
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
(2)在core-site.xml文件中增加
<property>
<name>ha.zookeeper.quorum</name>
<value>hadoop102:2181,hadoop103:2181,hadoop104:2181</value>
</property>
- 启动
(1)关闭所有HDFS服务:
sbin/stop-dfs.sh
(2)启动Zookeeper集群:
bin/zkServer.sh start
(3)初始化HA在Zookeeper中状态:
bin/hdfs zkfc -formatZK
(4)启动HDFS服务:
sbin/start-dfs.sh
(5)在各个NameNode节点上启动DFSZK Failover Controller,先在哪台机器启动,哪个机器的NameNode就是Active NameNode
sbin/hadoop-daemin.sh start zkfc
- 验证
(1)将Active NameNode进程kill
kill -9 namenode的进程id
(2)将Active NameNode机器断开网络
service network stop
- 官方文档:
http://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/ResourceManagerHA.html
- YARN-HA工作机制,如图3-23所示
- 环境准备
(1)修改IP
(2)修改主机名及主机名和IP地址的映射
(3)关闭防火墙
(4)ssh免密登录
(5)安装JDK,配置环境变量等
(6)配置Zookeeper集群
- 规划集群
表3-2
hadoop102 | hadoop103 | hadoop104 |
---|---|---|
NameNode | NameNode | |
JournalNode | JournalNode | JournalNode |
DataNode | DataNode | DataNode |
ZK | ZK | ZK |
ResourceManager | ResourceManager | |
NodeManager | NodeManager | NodeManager |
- 具体配置
(1)yarn-site.xml
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<!--启用resourcemanager ha-->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!--声明两台resourcemanager的地址-->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>cluster-yarn1</value>
</property>
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>hadoop102</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>hadoop103</value>
</property>
<!--指定zookeeper集群的地址-->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>hadoop102:2181,hadoop103:2181,hadoop104:2181</value>
</property>
<!--启用自动恢复-->
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property>
<!--指定resourcemanager的状态信息存储在zookeeper集群-->
<property>
<name>yarn.resourcemanager.store.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
</configuration>
(2)同步更新其他节点的配置信息
- 启动hdfs
(1)在各个JournalNode节点上,输入以下命令启动journalnode服务:
sbin/hadoop-daemon.sh start journalnode
(2)在[nn1]上,对其进行格式化,并启动:
bin/hdfs namenode -format
sbin/hadoop-daemon.sh start namenode
(3)在[nn2]上,同步nn1的元数据信息:
bin/hdfs namenode -bootstrapStandby
(4)启动[nn2]:
sbin/hadoop-daemon.sh start namenode
(5)启动所有DataNode
sbin/hadoop-daemons.sh start datanode
(6)将[nn1]切换为Active
bin/hdfs haadmin -transitionToActive nn1
- 启动YARN
(1)在hadoop102中执行:
sbin/start-yarn.sh
(2)在hadoop103中执行:
sbin/yarn-daemon.sh start resourcemanager
(3)查看服务状态,如图3-24所示
bin/yarn rmadmin -getServiceState rm1
- NameNode架构的局限性
(1)Namespace(命名空间)的限制
由于NameNode在内存中存储所有的元数据(metadata),因此单个NameNode所能存储的对象(文件+块)数目受到NameNode所在JVM的heap size的限制。50G的heap能够存储20亿(200million)个对象,这20亿个对象支持4000个DataNode,12PB的存储(假设文件平均大小为40MB)。随着数据的飞速增长,存储的需求也随之增长。单个DataNode从4T增长到36T,集群的尺寸增长到8000个DataNode。存储的需求从12PB增长到大于100PB。
(2)隔离问题
由于HDFS仅有一个NameNode,无法隔离各个程序,因此HDFS上的一个实验程序就很有可能影响整个HDFS上运行的程序。
(3)性能的瓶颈
由于是单个NameNode的HDFS架构,因此整个HDFS文件系统的吞吐量受限于单个NameNode的吞吐量。
- HDFS Federation架构设计,如图3-25所示
能不能有多个NameNode
表3-3
NameNode | NameNode | NameNode |
---|---|---|
元数据 | 元数据 | 元数据 |
Log | machine | 电商数据/话单数据 |
- HDFS Federation应用思考
不同应用可以使用不同NameNode进行数据管理 、图片业务、爬虫业务、日志审计业务
Hadoop生态系统中,不同的框架使用不同的NameNode进行管理NameSpace。(隔离性)