forked from JIABI/GhostShiftAddNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_fix.py
executable file
·701 lines (638 loc) · 31.4 KB
/
train_fix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
import argparse
import os, time
import torch
import shutil
import numpy as np
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import models
import optim
import torch.backends.cudnn as cudnn
from cyclicLR import CyclicCosAnnealingLR
import matplotlib.pyplot as plt
from se_shift import SEConv2d, SELinear
from se_shift.utils_quantize import sparsify_and_nearestpow2
from se_shift.utils_swa import bn_update, moving_average
from se_shift.utils_optim import SGD
from adder.adder import Adder2D
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# Training settings
parser = argparse.ArgumentParser(description='PyTorch AdderNet Trainning')
parser.add_argument('--data', type=str, default='/data3/imagenet-data/raw-data/', help='path to imagenet')
parser.add_argument('--dataset', type=str, default='cifar10', help='training dataset')
parser.add_argument('--data_path', type=str, default=None, help='path to dataset')
parser.add_argument('--batch_size', type=int, default=64, metavar='N', help='batch size for training')
parser.add_argument('--test_batch_size', type=int, default=64, metavar='N', help='batch size for testing')
parser.add_argument('--epochs', type=int, default=20, metavar='N', help='number of epochs to train')
parser.add_argument('--start_epoch', type=int, default=0, metavar='N', help='restart point')
parser.add_argument('--schedule', type=int, nargs='+', default=[80, 120], help='learning rate schedule')
parser.add_argument('--lr', type=float, default=0.25, metavar='LR', help='learning rate')
parser.add_argument('--lr-sign', default=None, type=float, help='separate initial learning rate for sign params')
parser.add_argument('--lr_decay', default='stepwise', type=str, choices=['stepwise', 'cosine', 'cyclic_cosine'])
parser.add_argument('--optimizer', type=str, default='sgd', help='used optimizer')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W', help='weight decay')
parser.add_argument('--resume', default='./ShiftAddNet_ckpt/shiftaddnet_fix/resnet20-cifar10-FIX8-Modify.pth.tar', type=str, metavar='PATH', help='path to latest checkpoint')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed')
parser.add_argument('--save', default='./temp', type=str, metavar='PATH', help='path to save prune model')
parser.add_argument('--arch', default='resnet20_shiftadd_se', type=str, help='architecture to use')
parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training')
parser.add_argument('--log_interval', type=int, default=100, metavar='N', help='how many batches to wait before logging training status')
# multi-gpus
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
""" SE model arguments """
parser.add_argument('--threshold', type=float, default=7 * 1e-3, # (>= 2^-7)
help='Threshold in prune weight.')
parser.add_argument('--quant_each_step', action='store_true',
help='Sparsify and quantize coefficient matrcies after each training step.')
""" Bucket Switch arguments """
parser.add_argument('--switch', action='store_true', default=True,
help='Use Bucket Switch update scheme.')
parser.add_argument('--switch_bar', type=int, default=7, # 5 / 7
help='Minimal times of accumulated gradient directions before an update.')
parser.add_argument('--dweight_threshold', type=float, default=0.0008, # 1e-2 for mobilenet; need finetune
help='Threshold that filter small changes in Ce')
parser.add_argument('--max_weight', type=float, default=1, metavar='MC',
help='maximal magnitude in Ce matrices. not set by default')
# swa arguments
parser.add_argument('--swa', action='store_true', default=False, help='whether to use swa')
parser.add_argument('--swa_start', type=float, default=1, metavar='N',
help='SWA start epoch number (default: 161)')
parser.add_argument('--swa_lr', type=float, default=0.05, metavar='LR',
help='SWA LR (default: 0.05)')
parser.add_argument('--swa_c_epochs', type=int, default=1, metavar='N',
help='SWA model collection frequency/cycle length in epochs (default: 1)')
# sparse
parser.add_argument('--sign_threshold', type=float, default=0.5, help='Threshold for pruning.')
parser.add_argument('--dist', type=str, default='normal', choices=['kaiming_normal', 'normal', 'uniform'])
parser.add_argument('--l1', action='store_true', default=True, help='whether sparse shift l1 norm')
# add hyper-parameters
parser.add_argument('--add_quant', type=bool, default=False, help='whether to quantize adder layer')
parser.add_argument('--add_bits', type=int, default=32, help='number of bits to represent the adder filters')
parser.add_argument('--add_sparsity', type=float, default=0.2, help='sparsity in adder filters')
# distributed parallel
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--port", type=str, default="10000")
parser.add_argument('--distributed', action='store_true', help='whether to use distributed training')
# eval only
parser.add_argument('--eval_only', action='store_true', help='whether only evaluation')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
if not os.path.exists(args.save):
os.makedirs(args.save)
cudnn.benchmark = True
gpu = args.gpu_ids
gpu_ids = args.gpu_ids.split(',')
args.gpu_ids = []
for gpu_id in gpu_ids:
id = int(gpu_id)
args.gpu_ids.append(id)
#(args.gpu_ids)
# if len(args.gpu_ids) > 0:
# torch.cuda.set_device(args.gpu_ids[0])
if args.distributed:
os.environ['MASTER_PORT'] = args.port
torch.distributed.init_process_group(backend="nccl")
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
if args.dataset == 'cifar10':
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data.cifar10', train=True, download=True,
transform=transforms.Compose([
transforms.Pad(4),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data.cifar10', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
elif args.dataset == 'cifar100':
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('./data.cifar100', train=True, download=True,
transform=transforms.Compose([
transforms.Pad(4),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('./data.cifar100', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
elif args.dataset == 'mnist':
trainset = datasets.MNIST('../MNIST', download=True, train=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))]
)
)
train_loader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=4)
testset = datasets.MNIST('../MNIST', download=True, train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))]
)
)
test_loader = torch.utils.data.DataLoader(testset, batch_size=args.test_batch_size, shuffle=True, num_workers=4)
else:
# Data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=16, pin_memory=True)
test_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=args.test_batch_size, shuffle=False,
num_workers=16, pin_memory=True)
if args.dataset == 'imagenet':
num_classes = 1000
model = models.__dict__[args.arch](threshold=args.threshold, sign_threshold=args.sign_threshold, distribution=args.dist, num_classes=1000,
quantize=args.add_quant, weight_bits=args.add_bits, sparsity=args.add_sparsity)
if args.swa:
swa_model = models.__dict__[args.arch](threshold=args.threshold, sign_threshold=args.sign_threshold, distribution=args.dist, num_classes=1000,
quantize=args.add_quant, weight_bits=args.add_bits, sparsity=args.add_sparsity)
elif args.dataset == 'cifar10':
num_classes = 10
model = models.__dict__['resnet20_shiftadd_se'](threshold=args.threshold, sign_threshold=args.sign_threshold, distribution=args.dist, num_classes=10,
quantize=args.add_quant, weight_bits=args.add_bits, sparsity=args.add_sparsity)
if args.swa:
swa_model = models.__dict__[args.arch](threshold=args.threshold, sign_threshold=args.sign_threshold, distribution=args.dist, num_classes=10,
quantize=args.add_quant, weight_bits=args.add_bits, sparsity=args.add_sparsity)
elif args.dataset == 'cifar100':
num_classes = 100
model = models.__dict__[args.arch](threshold=args.threshold, sign_threshold=args.sign_threshold, distribution=args.dist, num_classes=100,
quantize=args.add_quant, weight_bits=args.add_bits, sparsity=args.add_sparsity)
if args.swa:
swa_model = models.__dict__[args.arch](threshold=args.threshold, sign_threshold=args.sign_threshold, distribution=args.dist, num_classes=100,
quantize=args.add_quant, weight_bits=args.add_bits, sparsity=args.add_sparsity)
elif args.dataset == 'mnist':
num_classes = 10
model = models.__dict__[args.arch](threshold=args.threshold, sign_threshold=args.sign_threshold, distribution=args.dist, num_classes=10,
quantize=args.add_quant, weight_bits=args.add_bits, sparsity=args.add_sparsity)
if args.swa:
swa_model = models.__dict__[args.arch](threshold=args.threshold, sign_threshold=args.sign_threshold, distribution=args.dist, num_classes=10,
quantize=args.add_quant, weight_bits=args.add_bits, sparsity=args.add_sparsity)
else:
raise NotImplementedError('No such dataset!')
if args.cuda:
model.cuda()
if args.swa:
swa_model.cuda()
if len(args.gpu_ids) > 1:
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=args.gpu_ids, find_unused_parameters=True)
if args.swa:
swa_model = torch.nn.parallel.DistributedDataParallel(swa_model, device_ids=args.gpu_ids)
else:
model = torch.nn.DataParallel(model, device_ids=args.gpu_ids)
if args.swa:
swa_model = torch.nn.DataParallel(swa_model, device_ids=args.gpu_ids)
# create optimizer
# optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
optimizer = None
if (args.optimizer.lower() == "sgd"):
optimizer = SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
elif (args.optimizer.lower() == "adadelta"):
optimizer = torch.optim.Adadelta(model.parameters(), args.lr, weight_decay=args.weight_decay)
elif (args.optimizer.lower() == "adagrad"):
optimizer = torch.optim.Adagrad(model.parameters(), args.lr, weight_decay=args.weight_decay)
elif (args.optimizer.lower() == "adam"):
optimizer = torch.optim.Adam(model.parameters(), args.lr, weight_decay=args.weight_decay)
elif (args.optimizer.lower() == "rmsprop"):
optimizer = torch.optim.RMSprop(model.parameters(), args.lr, weight_decay=args.weight_decay)
elif (args.optimizer.lower() == "radam"):
optimizer = optim.RAdam(model.parameters(), args.lr, weight_decay=args.weight_decay)
elif (args.optimizer.lower() == "ranger"):
optimizer = optim.Ranger(model.parameters(), args.lr, weight_decay=args.weight_decay)
else:
raise ValueError("Optimizer type: ", args.optimizer, " is not supported or known")
schedule_cosine_lr_decay = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs, eta_min=0, last_epoch=-1)
scheduler_cyclic_cosine_lr_decay = CyclicCosAnnealingLR(optimizer, milestones=[40,60,80,100,140,180,200,240,280,300,340,400], decay_milestones=[100, 200, 300, 400], eta_min=0)
def save_checkpoint(state, is_best, epoch, filepath):
if epoch == 'init':
filepath = os.path.join(filepath, 'init.pth.tar')
torch.save(state, filepath)
else:
# filename = os.path.join(filepath, 'ckpt'+str(epoch)+'.pth.tar')
# torch.save(state, filename)
filename = os.path.join(filepath, 'ckpt.pth.tar')
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, os.path.join(filepath, 'model_best.pth.tar'))
def save_checkpoint_swa(state, is_best, is_swa_best, epoch, filepath):
if epoch == 'init':
filepath = os.path.join(filepath, 'init.pth.tar')
torch.save(state, filepath)
else:
# filename = os.path.join(filepath, 'ckpt'+str(epoch)+'.pth.tar')
# torch.save(state, filename)
filename = os.path.join(filepath, 'ckpt.pth.tar')
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, os.path.join(filepath, 'model_best.pth.tar'))
if is_swa_best:
shutil.copyfile(filename, os.path.join(filepath, 'swa_model_best.pth.tar'))
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
# if 'epoch' in checkpoint.keys():
# args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
if ('swa_state_dict' in checkpoint.keys() and checkpoint['swa_state_dict'] is not None):
swa_model.load_state_dict(checkpoint['swa_state_dict'])
if 'swa_n' in checkpoint.keys() and checkpoint['swa_n'] is not None:
swa_n = checkpoint['swa_n']
print("=> loaded checkpoint '{}' (epoch {}) Prec1: {:f}"
.format(args.resume, checkpoint['epoch'], best_prec1))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
else:
save_checkpoint({'state_dict': model.state_dict()}, False, epoch='init', filepath=args.save)
# set mask
if args.swa:
for m, swa_m in zip(model.modules(), swa_model.modules()):
if isinstance(m, (SEConv2d, SELinear,)):
m.set_mask()
swa_m.mask.data = m.mask.data.clone()
else:
for m in model.modules():
if isinstance(m, SEConv2d):
m.set_mask()
print('All masks are set....')
""" Switch arguments setting. """
if args.switch:
for i in range(-10, 1):
if 2**i >= args.threshold:
args.min_weight = 2**i
break
shift_label = "shift-se"
if args.swa:
shift_label += '-swa-lr-{}'.format(args.swa_lr)
if args.switch:
shift_label += '-switch-bar-{}-max_weight-{}-min_weight-{}'.format(args.switch_bar, args.max_weight, args.min_weight)
shift_label += '-dweight_thre-{}'.format(args.dweight_threshold)
if args.add_quant:
shift_label += '-add-{}'.format(args.add_bits)
if args.l1:
shift_label += 'l1'
args.save = os.path.join(args.save, shift_label)
if not os.path.exists(args.save):
os.makedirs(args.save)
# print(args.add_quant)
# exit()
history_score = np.zeros((args.epochs, 7))
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].contiguous().view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
global total
total = 0
for m in model.modules():
if isinstance(m, SEConv2d):
total += m.weight.data.numel()
global total_add
total_add = 0
for m in model.modules():
if isinstance(m, Adder2D):
total_add += m.adder.data.numel()
def get_pruning_ratio(model):
if 'shift' in args.arch:
shift_masks = torch.zeros(total)
index = 0
for m in model.modules():
if isinstance(m, SEConv2d):
size = m.weight.data.numel()
shift_masks[index:(index+size)] = m.mask.data.view(-1).abs().clone()
index += size
print('Pruning ratio:'.format(np.round((1 - torch.sum(shift_masks)), 2)))
return np.round((1 - torch.sum(shift_masks) / float(total)) * 100, 2)
if 'shift' in args.arch:
shift_module = SEConv2d
if 'add' in args.arch:
add_module = Adder2D
def get_shift_range(model):
if 'shift' in args.arch:
print('shift candidates:')
total = 0
for m in model.modules():
if isinstance(m, shift_module):
total += m.weight.data.numel()
shift_weights = torch.zeros(total)
shift_masks = torch.zeros(total)
index = 0
for m in model.modules():
if isinstance(m, shift_module):
size = m.weight.data.numel()
shift_weights[index:(index+size)] = m.weight.data.view(-1).abs().clone()
shift_masks[index:(index+size)] = m.mask.data.view(-1).abs().clone()
index += size
# y, i = torch.sort(shift_weights)
weight_unique = torch.unique(shift_weights)
#print(weight_unique)
print('shift range:', weight_unique.size()[0]-1)
weight_dist = []
#for value in weight_unique:
# weight_dist.append(np.round((torch.sum(shift_weights == value) / float(total)) * 100, 2))
#print(weight_dist)
left_shift_weight = int(torch.sum(shift_weights == 0))
left_shift_mask = int(torch.sum(shift_masks))
print('pruning ratio:', (1 - left_shift_mask / float(total)) * 100, '%')
print('left mask:', left_shift_mask)
print('left weights:', left_shift_weight)
print('total shift:', index)
history_score[epoch][5] = left_shift_mask
def get_adder_sparsity(model):
#if args.add_sparsity == 0:
# print('no sparisty in adder layer.')
if 'add' in args.arch:
adder_masks = torch.zeros(total_add)
index = 0
for m in model.modules():
if isinstance(m, Adder2D):
size = m.adder.data.numel()
adder_masks[index:(index+size)] = m.adder_mask.data.view(-1).abs().clone()
index += size
left_adder_mask = int(torch.sum(adder_masks))
print('left adder mask', left_adder_mask)
print('Add sparsity ratio:', (1 - left_adder_mask / float(total_add)) * 100, '%')
print('total adders:', total_add)
history_score[epoch][6] = left_adder_mask
def train(epoch):
model.train()
global history_score
avg_loss = 0.
train_acc = 0.
end_time = time.time()
feat_loader = []
idx_loader = []
# l1 = None
# l1_regularization = torch.tensor(0).to(torch.device('cuda'))
start_time = time.time()
# reset ``dweight_counter`` in SE layers
if args.switch:
for m in model.modules():
if hasattr(m, 'mask'):
m.reset_dweight_counter()
batch_time = time.time()
for batch_idx, (data, target) in enumerate(train_loader):
# print('total time for one batch: {}'.format(time.time()-batch_time))
batch_time = time.time()
# l1_regularization = torch.tensor(0).to(torch.device('cuda'))
# if args.quant_each_step:
# for m in model.modules():
# if hasattr(m, 'mask'):
# with torch.no_grad():
# m.weight_prev = m.sparsify_and_quantize_weight()
# start_time = time.time()
if args.cuda:
data, target = data.cuda(non_blocking=True), target.cuda(non_blocking=True)
data, target = Variable(data), Variable(target)
# print('!!!!!!!!prepare data: ', time.time()-start_time)
# start_time = time.time()
optimizer.zero_grad()
output = model(data)
# print('!!!!!!!!forward time: ', time.time()-start_time)
#if args.l1:
loss = F.cross_entropy(output, target)
#for param in model.parameters():
# l1 = torch.norm(param, 1)
# l1 = l1.type(torch.LongTensor)
# l1_regularization = l1
# if torch.sum(abs(cross_entropy_loss + l1_regularization) != 0):
# mask = torch.sign(cross_entropy_loss)
#loss = cross_entropy_loss - 0.0001 * l1_regularization
#loss = cross_entropy_loss * mask
#newmask = torch.sign(loss)
#elif torch.sum(abs(cross_entropy_loss + l1_regularization) < 0):
# loss = cross_entropy_loss - l1_regularization
#else:
# loss = F.cross_entropy(output, target)
avg_loss += loss.item()
prec1, prec5 = accuracy(output.data, target.data, topk=(1, 5))
train_acc += prec1.item()
# start_time = time.time()
loss.backward()
# torch.cuda.synchronize()
# fix conv (used for normaladd variant)
# for name, m in model.named_modules():
# if isinstance(m, nn.Conv2d):
# m.weight.grad = None
# update weight
if args.switch:
# Bucket Switching
for name, m in model.named_modules():
if not hasattr(m, 'mask'):
continue
with torch.no_grad():
#pre = torch.sum(abs(m.weight.data) < args.threshold)
pre = m.weight.data
pre[pre.abs() <= args.threshold] = 0.0
pre_mask = pre.sign().float()
#print(pre_mask)
qweight = m.sparsify_and_quantize_weight()
dweight = optimizer.get_d(m.weight)
all_linear1_weight = sum(p.abs().sum() for p in pre)
linear1_weight = 0.000001*all_linear1_weight
if dweight is None:
continue
if args.dweight_threshold > 0.0:
# adative LR
#dweight = 0.1 * np.sqrt(dweight.numel()) / torch.norm(dweight) * dweight
# # print(dweight.mean())
dweight[dweight.abs() <= args.dweight_threshold] = 0.0
# m.weight.grad = None
dweight_sign = dweight.sign().float()
# # update dweight_counter
m.dweight_counter.add_(dweight_sign)
activated = m.dweight_counter.abs() == args.switch_bar
dweight_sign = m.dweight_counter.sign() * activated.float()
# # weight nonzero and gradient nonzero
dweight_pow = dweight_sign * qweight.sign().float()
dweight_mul = 2 ** dweight_pow
#print(dweight_mul)
# # weight zero and gradient nonzero
dweight_add = (qweight == 0.0).float() * m.mask * dweight_sign * args.min_weight
# # print(torch.sum(dweight_add))
# # update weight
new_weight = (qweight.data * dweight_mul + dweight_add + linear1_weight) * pre_mask
#new_weight[new_weight.abs() <= args.min_weight] = 0.0
#m.new_pre_mask = new_weight.sign().float()
#new_weight = new_weight * m.new_pre_mask
#print(new_weight)
if args.max_weight is not None:
new_weight.clamp_(-args.max_weight, args.max_weight)
m.weight.data = new_weight
# # check whether new_weight contains weights that less than given threshold
# # now = torch.sum(abs(new_weight) < args.threshold)
# # print(now-pre)
#print('pruning weights sum'.format(torch.sum(abs(now - pre))))
# # reset the activated counters to 0
m.dweight_counter[activated] = 0.0
optimizer.step()
# print('!!!!!!!!backward time: ', time.time()-start_time)
# pruning_ratio = get_pruning_ratio(model)
#if args.quant_each_step:
for name, m in model.named_modules():
if hasattr(m, 'mask'):
with torch.no_grad():
# #pass # do not need if fixed shift parameters
m.weight.data = m.sparsify_and_quantize_weight()
# m.weight.data = m.weight.data * m.new_pre_mask
# reset mask??
# if pruning_ratio < 50:
m.set_mask()
for name, m in model.named_modules():
if not hasattr(m, 'mask'):
continue
if isinstance(m, Adder2D):
all_linear1_params =sum(p.abs().sum() for p in m.adder.data)
linear1_params = 0.001 * all_linear1_params
adder_sum = m.adder.data
adder_sum_mask = adder_sum.sign().float()
#mask1 = torch.sign(abs(adder_sum))
#if l1 is None:
#else:
# l1 = l1+adder_sum.norm(1)
#print(linear1_params)
adder_data_pre = adder_sum - linear1_params
#mask = torch.sign(abs(adder_data_pre))
#adder_data_new = m.round_weight_each_step(adder_data_pre, m.weight_bits)
#m.adder.data = adder_data_new * mask * mask1
m.adder.data = (m.round_weight_each_step(adder_data_pre, m.weight_bits)) * adder_sum_mask
print('adder data:'.format(m.adder.data))
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.1f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item()))
Total_train_time = time.time() - start_time
print('total training time for one epoch: {}'.format(Total_train_time))
history_score[epoch][0] = avg_loss / len(train_loader)
history_score[epoch][1] = np.round(train_acc / len(train_loader), 2)
history_score[epoch][3] = Total_train_time
def test(model):
start_time = time.time()
model.eval()
test_loss = 0
test_acc = 0
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
with torch.no_grad():
#data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
test_loss += F.cross_entropy(output, target, reduction='sum').item() # sum up batch loss
prec1, prec5 = accuracy(output.data, target.data, topk=(1, 5))
test_acc += prec1.item()
test_loss /= len(test_loader.dataset)
Total_test_time = time.time() - start_time
print('total test time for one epoch: {}'.format(Total_test_time))
history_score[epoch][4] = Total_test_time
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
test_loss, test_acc, len(test_loader), test_acc / len(test_loader)))
return np.round(test_acc / len(test_loader), 2)
best_prec1 = 0.
swa_best_prec1 = 0.
swa_n = 0
swa_acc1 = 0.
if __name__ == '__main__':
for epoch in range(args.start_epoch, args.epochs):
if args.eval_only:
with torch.no_grad():
prec1 = test(model)
print('Prec1: {}: '.format(prec1))
exit()
if args.lr_decay == 'stepwise':
# step-wise LR schedule
if epoch in args.schedule:
for param_group in optimizer.param_groups:
param_group['lr'] *= 0.1
elif args.lr_decay == 'cosine':
schedule_cosine_lr_decay.step(epoch)
elif args.lr_decay == 'cyclic_cosine':
scheduler_cyclic_cosine_lr_decay.step(epoch)
else:
raise NotImplementedError
train(epoch)
prec1 = test(model)
history_score[epoch][2] = prec1
#history_score[epoch][3] = prec5
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
#best_prec5 = max(prec5, best_prec5)
get_shift_range(model)
get_adder_sparsity(model)
# swa part
if args.swa:
if ((epoch + 1) >= args.swa_start and
(epoch + 1 - args.swa_start) % args.swa_c_epochs == 0):
moving_average(swa_model, model, 1.0 / (swa_n + 1))
swa_n += 1
bn_update(train_loader, swa_model)
swa_acc1 = test(swa_model)
#history_score[epoch][3] = swa_acc1
is_swa_best = swa_acc1 > swa_best_prec1
swa_best_prec1 = max(swa_acc1, swa_best_prec1)
# save_checkpoint_swa({
# 'epoch': epoch + 1,
# 'arch': args.arch,
# 'state_dict': model.state_dict(),
# 'swa_state_dict': swa_model.state_dict(),
# 'swa_n': swa_n,
# 'best_prec1': best_prec1,
# 'optimizer': optimizer.state_dict(),
# }, is_best, is_swa_best, epoch, filepath=args.save)
# else:
# save_checkpoint({
# 'epoch': epoch + 1,
# 'arch': args.arch,
# 'state_dict': model.state_dict(),
# 'best_prec1': best_prec1,
# 'optimizer': optimizer.state_dict(),
# }, is_best, epoch, filepath=args.save)
np.savetxt(os.path.join(args.save, 'record_sparse0noswitch.txt'), history_score, fmt='%10.5f', delimiter=',')
print("Best accuracy: " + str(best_prec1))
#history_score[-1][2] = best_prec1
#history_score[-1][3] = best_prec5
np.savetxt(os.path.join(args.save, 'record_sparse0noswitch.txt'), history_score, fmt='%10.5f', delimiter=',')