forked from uchidalab/time_series_augmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtimer.py
99 lines (87 loc) · 7.02 KB
/
timer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import numpy as np
import os
import sys
from tqdm import tqdm
import argparse
import time
from tensorflow.keras.utils import to_categorical
from utils.input_data import get_datasets, run_augmentation
import utils.datasets as ds
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Evalates average time for augmentation.')
# Augmentation
parser.add_argument('--augmentation_ratio', type=int, default=1, help="How many times to augment")
parser.add_argument('--seed', type=int, default=2, help="Randomization seed")
parser.add_argument('--jitter', default=False, action="store_true", help="Jitter preset augmentation")
parser.add_argument('--scaling', default=False, action="store_true", help="Scaling preset augmentation")
parser.add_argument('--permutation', default=False, action="store_true", help="Equal Length Permutation preset augmentation")
parser.add_argument('--randompermutation', default=False, action="store_true", help="Random Length Permutation preset augmentation")
parser.add_argument('--magwarp', default=False, action="store_true", help="Magnitude warp preset augmentation")
parser.add_argument('--timewarp', default=False, action="store_true", help="Time warp preset augmentation")
parser.add_argument('--windowslice', default=False, action="store_true", help="Window slice preset augmentation")
parser.add_argument('--windowwarp', default=False, action="store_true", help="Window warp preset augmentation")
parser.add_argument('--rotation', default=False, action="store_true", help="Rotation preset augmentation")
parser.add_argument('--spawner', default=False, action="store_true", help="SPAWNER preset augmentation")
parser.add_argument('--dtwwarp', default=False, action="store_true", help="DTW warp preset augmentation")
parser.add_argument('--shapedtwwarp', default=False, action="store_true", help="Shape DTW warp preset augmentation")
parser.add_argument('--wdba', default=False, action="store_true", help="Weighted DBA preset augmentation")
parser.add_argument('--discdtw', default=False, action="store_true", help="Discrimitive DTW warp preset augmentation")
parser.add_argument('--discsdtw', default=False, action="store_true", help="Discrimitive shapeDTW warp preset augmentation")
parser.add_argument('--extra_tag', type=str, default="", help="Anything extra")
# File settings
parser.add_argument('--preset_files', default=True, action="store_true", help="Use preset files")
parser.add_argument('--ucr', default=False, action="store_true", help="Use UCR 2015")
parser.add_argument('--ucr2018', default=True, action="store_true", help="Use UCR 2018")
parser.add_argument('--data_dir', type=str, default="data", help="Data dir")
parser.add_argument('--train_data_file', type=str, default="", help="Train data file")
parser.add_argument('--train_labels_file', type=str, default="", help="Train label file")
parser.add_argument('--test_data_file', type=str, default="", help="Test data file")
parser.add_argument('--test_labels_file', type=str, default="", help="Test label file")
parser.add_argument('--test_split', type=int, default=0, help="test split")
parser.add_argument('--weight_dir', type=str, default="weights", help="Weight path")
parser.add_argument('--log_dir', type=str, default="logs", help="Log path")
parser.add_argument('--output_dir', type=str, default="output", help="Output path")
parser.add_argument('--normalize_input', default=True, action="store_true", help="Normalize between [-1,1]")
parser.add_argument('--delimiter', type=str, default=" ", help="Delimiter")
args = parser.parse_args()
datasets = ["Adiac", "ArrowHead", "Beef", "BeetleFly", "BirdChicken", "Car", "CBF", "ChlorineConcentration", "CinCECGTorso",
"Coffee", "Computers", "CricketX", "CricketY", "CricketZ", "DiatomSizeReduction", "DistalPhalanxOutlineAgeGroup",
"DistalPhalanxOutlineCorrect", "DistalPhalanxTW", "Earthquakes", "ECG200", "ECG5000", "ECGFiveDays",
"ElectricDevices", "FaceAll", "FaceFour", "FacesUCR", "FiftyWords", "Fish", "FordA", "FordB", "GunPoint",
"Ham", "HandOutlines", "Haptics", "Herring", "InlineSkate", "InsectWingbeatSound", "ItalyPowerDemand",
"LargeKitchenAppliances", "Lightning2", "Lightning7", "Mallat", "Meat", "MedicalImages",
"MiddlePhalanxOutlineAgeGroup", "MiddlePhalanxOutlineCorrect", "MiddlePhalanxTW", "MoteStrain",
"NonInvasiveFetalECGThorax1", "NonInvasiveFetalECGThorax2", "OliveOil", "OSULeaf", "PhalangesOutlinesCorrect",
"Phoneme", "Plane", "ProximalPhalanxOutlineAgeGroup", "ProximalPhalanxOutlineCorrect", "ProximalPhalanxTW",
"RefrigerationDevices", "ScreenType", "ShapeletSim", "ShapesAll", "SmallKitchenAppliances", "SonyAIBORobotSurface1",
"SonyAIBORobotSurface2", "StarLightCurves", "Strawberry", "SwedishLeaf", "Symbols", "SyntheticControl",
"ToeSegmentation1", "ToeSegmentation2", "Trace", "TwoLeadECG", "TwoPatterns", "UWaveGestureLibraryAll",
"UWaveGestureLibraryX", "UWaveGestureLibraryY", "UWaveGestureLibraryZ", "Wafer", "Wine", "WordSynonyms",
"Worms", "WormsTwoClass", "Yoga", "ACSF1", "AllGestureWiimoteX", "AllGestureWiimoteY", "AllGestureWiimoteZ",
"BME", "Chinatown", "Crop", "DodgerLoopDay", "DodgerLoopGame", "DodgerLoopWeekend", "EOGHorizontalSignal",
"EOGVerticalSignal", "EthanolLevel", "FreezerRegularTrain", "FreezerSmallTrain", "Fungi", "GestureMidAirD1",
"GestureMidAirD2", "GestureMidAirD3", "GesturePebbleZ1", "GesturePebbleZ2", "GunPointAgeSpan",
"GunPointMaleVersusFemale", "GunPointOldVersusYoung", "HouseTwenty", "InsectEPGRegularTrain", "InsectEPGSmallTrain",
"MelbournePedestrian", "MixedShapesRegularTrain", "MixedShapesSmallTrain", "PickupGestureWiimoteZ",
"PigAirwayPressure", "PigArtPressure", "PigCVP", "PLAID", "PowerCons","Rock","SemgHandGenderCh2",
"SemgHandMovementCh2","SemgHandSubjectCh2","ShakeGestureWiimoteZ","SmoothSubspace","UMD"]
total = 0
for i, dataset in enumerate(datasets):
args.dataset = dataset
nb_class = ds.nb_classes(args.dataset)
nb_dims = ds.nb_dims(args.dataset)
# Load data
x_train, y_train, x_test, y_test = get_datasets(args)
nb_timesteps = int(x_train.shape[1] / nb_dims)
input_shape = (nb_timesteps , nb_dims)
# Process data
x_test = x_test.reshape((-1, input_shape[0], input_shape[1]))
x_train = x_train.reshape((-1, input_shape[0], input_shape[1]))
y_test = to_categorical(ds.class_offset(y_test, args.dataset), nb_class)
y_train = to_categorical(ds.class_offset(y_train, args.dataset), nb_class)
# Augment data
start = time.time()
x_train, y_train, augmentation_tags = run_augmentation(x_train, y_train, args)
total += time.time()-start
print(total)
print(total/128.)