forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convert-ggml-to-pth.py
299 lines (249 loc) · 9.75 KB
/
convert-ggml-to-pth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# Author: github.com/ductai199x
import argparse
import os
import struct
import numpy as np
import torch
from numba import njit
from tqdm.auto import tqdm
def read_header(fin):
values = struct.unpack("i" * 9, fin.read(4 * 9))
_, _, vocab_size, dim, multiple_of, n_heads, n_layers, rot, ftype = values
return {
"vocab_size": vocab_size,
"dim": dim,
"multiple_of": multiple_of,
"n_heads": n_heads,
"n_layers": n_layers,
}, ftype
def read_tokens(fin, vocab_size):
tokens = []
for _ in range(vocab_size):
text_len = struct.unpack("i", fin.read(4))[0]
text_bytes = fin.read(text_len)
try:
text = text_bytes.decode()
except UnicodeDecodeError:
text = text_bytes.decode(errors="replace")
score = struct.unpack("f", fin.read(4))[0]
tokens.append((text, score))
return tokens
@njit
def dequantize_weights_numba(fin_data, n_rows, n_cols):
qk = 32
nb = n_cols // qk
bs = 4 + (qk // 2)
weights = np.zeros((n_rows, n_cols), dtype=np.float32)
data_pos = 0
for row in range(n_rows):
for block in range(nb):
d = np.frombuffer(fin_data[data_pos : data_pos + 4], dtype=np.float32)[0]
data_pos += 4
packed_values = fin_data[data_pos : data_pos + (qk // 2)]
data_pos += qk // 2
for i in range(qk // 2):
packed_value = packed_values[i]
v0 = np.float32((packed_value & 0b00001111) - 8) * d
v1 = np.float32((packed_value >> 4) - 8) * d
weights[row, block * qk + 2 * i] = v0
weights[row, block * qk + 2 * i + 1] = v1
return weights
def dequantize_weights(fin, n_rows, n_cols):
qk = 32
nb = n_cols // qk
data_size = n_rows * n_cols // 2 + n_rows * nb * 4
fin_data = fin.read(data_size)
return dequantize_weights_numba(fin_data, n_rows, n_cols)
def read_variables(fin):
model = {}
pbar = tqdm(total=os.path.getsize(fin.name), unit="B", unit_scale=True, desc="Reading variables")
while True:
start_pos = fin.tell()
try:
n_dims, name_length, ftype_cur = struct.unpack("iii", fin.read(4 * 3))
except struct.error:
break
shape = tuple(struct.unpack("i" * n_dims, fin.read(4 * n_dims)))
shape = shape[::-1]
name = fin.read(name_length).decode()
# ensure tensor data is aligned
tensor_data_offset = fin.tell()
tensor_data_offset = (tensor_data_offset + 31) & -32
fin.seek(tensor_data_offset)
if ftype_cur == 2:
# 4-bit quantized weights
dtype = np.uint8
data = dequantize_weights(fin, shape[0], shape[1])
data = data.reshape(shape)
elif ftype_cur == 0:
dtype = np.float32
data_size = np.prod(shape)
data = np.fromfile(fin, dtype=dtype, count=data_size).reshape(shape)
elif ftype_cur == 1:
dtype = np.float16
data_size = np.prod(shape)
data = np.fromfile(fin, dtype=dtype, count=data_size).reshape(shape)
model[name] = torch.tensor(data, dtype=torch.float32 if dtype == np.float32 else torch.float16)
pbar.update(fin.tell() - start_pos)
return model
def convert_to_hf_format(model, hparams):
# This works for llama 7B, need to test with other models
n_layers = hparams["n_layers"]
n_heads = hparams["n_heads"]
dim = hparams["dim"]
dims_per_head = dim // n_heads
base = 10000.0
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
# permute for sliced rotary
def permute(w):
return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)
state_dict = {}
for layer_i in range(n_layers):
state_dict.update(
{
f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(
model[f"layers.{layer_i}.attention.wq.weight"]
),
f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(
model[f"layers.{layer_i}.attention.wk.weight"]
),
f"model.layers.{layer_i}.self_attn.v_proj.weight": model[
f"layers.{layer_i}.attention.wv.weight"
],
f"model.layers.{layer_i}.self_attn.o_proj.weight": model[
f"layers.{layer_i}.attention.wo.weight"
],
f"model.layers.{layer_i}.mlp.gate_proj.weight": model[
f"layers.{layer_i}.feed_forward.w1.weight"
],
f"model.layers.{layer_i}.mlp.down_proj.weight": model[
f"layers.{layer_i}.feed_forward.w2.weight"
],
f"model.layers.{layer_i}.mlp.up_proj.weight": model[
f"layers.{layer_i}.feed_forward.w3.weight"
],
f"model.layers.{layer_i}.input_layernorm.weight": model[
f"layers.{layer_i}.attention_norm.weight"
],
f"model.layers.{layer_i}.post_attention_layernorm.weight": model[
f"layers.{layer_i}.ffn_norm.weight"
],
}
)
state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
state_dict.update(
{
"model.embed_tokens.weight": model["tok_embeddings.weight"],
"model.norm.weight": model["norm.weight"],
"lm_head.weight": model["output.weight"],
}
)
return state_dict
def chat(model, hparams, llama_dir):
from transformers import (GenerationConfig, LlamaForCausalLM,
LlamaTokenizer, StoppingCriteria,
StoppingCriteriaList)
from transformers.models.llama.configuration_llama import LlamaConfig
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self):
super().__init__()
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, stops=[]):
print(tokenizer.decode(input_ids[0]), end="", flush=True)
if input_ids[0][-1] == 13:
return True
return False
config = LlamaConfig(
vocab_size=hparams["vocab_size"],
dim=hparams["dim"],
num_hidden_layers=hparams["n_layers"],
num_attention_heads=hparams["n_heads"],
)
llama = LlamaForCausalLM(config=config)
llama.load_state_dict(state_dict=model, strict=True)
tokenizer = LlamaTokenizer.from_pretrained(llama_dir)
device = torch.device("cpu")
llama = llama.to(device)
ctx = """You are AI.
This is a dialog, where User interacts with AI. AI is helpful, kind, obedient, honest, respectful, direct, concise, should try to protect User's privacy, and knows its own limits. Also, AI must answer User and AI cannot stop the conversation by itself.
User: Hello, AI.
AI: Hello! How can I assist you today?
"""
print(ctx.rstrip("\n"))
while True:
print("-" * 60)
prompt = input("User: ")
if ctx != "":
ctx = f"{ctx}User: {prompt}\n"
else:
ctx = f"{prompt}\nAI:"
ctx = (ctx[-1920:]) if len(ctx) >= 2048 else ctx
print("-" * 60)
if len(ctx.strip()) > 0:
input_ids = tokenizer(ctx, return_tensors="pt")["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=0.8,
top_p=0.95,
top_k=50,
repetition_penalty=1.1764,
)
with torch.no_grad():
generation_output = llama.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_length=2048,
do_sample=True,
stopping_criteria=StoppingCriteriaList([StoppingCriteriaSub()]),
)
s = generation_output.sequences[0]
decoded = tokenizer.decode(s)
ctx = f"{decoded}\n"
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_dir", "-i", type=str, required=True, help="The input directory containing the ggml files."
)
parser.add_argument(
"--prefix",
"-p",
type=str,
required=True,
help="The prefix of the ggml files (ggml-model-f16 or ggml-model-q4_0).",
)
parser.add_argument(
"--hf",
action="store_true",
help="Whether to save the model in the huggingface format. (default: False)",
)
parser.add_argument(
"--chat", "-c", action="store_true", help="Whether to open a chat with the model. (default: False)"
)
args = parser.parse_args()
llama_dir = os.path.abspath(f"{args.input_dir}/../")
ggml_files = sorted(
[f"{args.input_dir}/{f}" for f in os.listdir(args.input_dir) if f.startswith(args.prefix)]
)
fin = open(ggml_files[0], "rb")
hparams, ftype = read_header(fin)
tokens = read_tokens(fin, hparams["vocab_size"])
model = read_variables(fin)
for f in tqdm(ggml_files[1:]):
fin = open(f, "rb")
read_header(fin)
read_tokens(fin, hparams["vocab_size"])
model.update(read_variables(fin))
if args.hf:
model = convert_to_hf_format(model, hparams)
pth_ckpt = {
"state_dict": model,
"hparams": hparams,
"tokens": tokens,
}
torch.save(pth_ckpt, f"{args.input_dir}/{args.prefix}-to-torch.pth")
if args.chat:
if not args.hf:
model = convert_to_hf_format(model, hparams)
chat(model, hparams, llama_dir)
if __name__ == "__main__":
main()