-
Notifications
You must be signed in to change notification settings - Fork 22
/
sample-input.txt
14 lines (9 loc) · 2.03 KB
/
sample-input.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Machine learning is a subset of artificial intelligence in the field of computer science that often uses statistical techniques to give computers the ability to "learn" (i.e., progressively improve performance on a specific task) with data, without being explicitly programmed.
Tom M. Mitchell provided a widely quoted, more formal definition of the algorithms studied in the machine learning field: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E.
Machine learning tasks are typically classified into two broad categories, depending on whether there is a learning "signal" or "feedback" available to a learning system:
Supervised learning: The computer is presented with example inputs and their desired outputs, given by a "teacher", and the goal is to learn a general rule that maps inputs to outputs. As special cases, the input signal can be only partially available, or restricted to special feedback:
Unsupervised learning: No labels are given to the learning algorithm, leaving it on its own to find structure in its input. Unsupervised learning can be a goal in itself (discovering hidden patterns in data) or a means towards an end (feature learning).
Another categorization of machine learning tasks arises when one considers the desired output of a machine-learned system:
In classification, inputs are divided into two or more classes, and the learner must produce a model that assigns unseen inputs to one or more (multi-label classification) of these classes. This is typically tackled in a supervised manner. Spam filtering is an example of classification, where the inputs are email (or other) messages and the classes are "spam" and "not spam".
In regression, also a supervised problem, the outputs are continuous rather than discrete.
In clustering, a set of inputs is to be divided into groups. Unlike in classification, the groups are not known beforehand, making this typically an unsupervised task.