-
Notifications
You must be signed in to change notification settings - Fork 11
/
trace_refute.py
662 lines (587 loc) · 19.3 KB
/
trace_refute.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
#
# Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
#
# SPDX-License-Identifier: BSD-2-Clause
#
# trace_refute: refutations of traces, useful for WCET
import syntax
import solver
import problem
import rep_graph
import search
import logic
import check
import stack_logic
from target_objects import functions, trace, pairings, symbols, printout
import target_objects
from logic import azip
import sys
def parse_num_list (s):
s = s.strip()
assert s[0] == '[', s
assert s[-1] == ']', s
inner = s[1:-1].strip ()
if not inner:
return []
return map (int, inner.split(','))
def parse_num_arrow_list (s):
s = s.strip()
assert s[0] == '[', s
assert s[-1] == ']', s
inner = s[1:-1].strip ()
if not inner:
return []
bits = inner.split(',')
res = []
for bit in bits:
if '<-' in bit:
[l, r] = bit.split('<-')
res.append ((int (l), int(r)))
else:
res.append ((int (bit), 0))
return res
def parse_ctxt_arcs (f):
ctxt = None
fc_len = len ('Funcall context')
arcs = {}
for line in f:
if line.startswith('Funcall context'):
line = line.strip()
assert line[-1] == '{'
context = line[fc_len:-1].strip()
ctxt = tuple (parse_num_list (context))
arcs.setdefault (ctxt, [])
elif line.startswith('}'):
ctxt = None
elif line.startswith('Arc:'):
assert ctxt, line
arc = parse_num_list (line[4:])
arcs[ctxt].append (arc)
assert not ctxt, ctxt
return arcs
body_addrs = {}
fun_addrs_counts = {}
def is_addr (n):
return n % 4 == 0
def setup_body_addrs ():
for f in stack_logic.get_functions_with_tag ('ASM'):
count = 0
for n in functions[f].nodes:
if is_addr (n):
body_addrs[n] = f
count += 1
fun_addrs_counts[f] = count
# just in case there aren't any
body_addrs['Loaded'] = True
def get_body_addrs_fun (n):
"""get the function a given body address is within."""
if not body_addrs:
setup_body_addrs ()
return body_addrs.get (n)
def addrs_covered (fs):
"""get the fraction of instructions covered by some functions"""
if not body_addrs:
setup_body_addrs ()
covered = sum ([fun_addrs_counts.get (f, 0) for f in fs])
total = len (body_addrs) - 1
return (covered * 1.0 / total)
def funs_sort_by_num_addrs (fs):
"""sort a list of function names into increasing order
of the number of instruction addresses, skipping functions
with no instructions in their body."""
if not body_addrs:
setup_body_addrs ()
fun_addrs = [(fun_addrs_counts[f], f) for f in fs
if f in fun_addrs_counts]
fun_addrs.sort ()
return [f for (n, f) in fun_addrs]
problem_inline_scripts = {}
def get_problem_inline_scripts (pair):
if pair.name in problem_inline_scripts:
return problem_inline_scripts[pair.name]
p = check.build_problem (pair, avoid_abort = True)
scripts = p.inline_scripts
problem_inline_scripts[pair.name] = scripts
return scripts
last_compound_problem_req = [0]
def build_compound_problem (fnames):
"""mirrors build_problem from check for multiple functions"""
printout ('Building compound problem for %s' % fnames)
last_compound_problem_req[0] = list (fnames)
p = problem.Problem (None, name = ', '.join(fnames))
fun_tag_pairs = []
all_tags = {}
for (i, fn) in enumerate (fnames):
i = len (fnames) - i
[pair] = pairings[fn]
next_tags = {}
scripts = get_problem_inline_scripts (pair)
for (pair_tag, fname) in pair.funs.items ():
tag = '%s_%d_%s' % (fname, i, pair_tag)
tag = syntax.fresh_name (tag, all_tags)
next_tags[pair_tag] = tag
p.add_entry_function (functions[fname], tag)
p.hook_tag_hints[tag] = pair_tag
p.replay_inline_script (tag, scripts[pair_tag])
fun_tag_pairs.append ((next_tags, pair))
p.pad_merge_points ()
p.do_analysis ()
free_hyps = []
for (tags, pair) in fun_tag_pairs:
(inp_eqs, _) = pair.eqs
free_hyps += check.inst_eqs (p, (), inp_eqs, tags)
err_vis_opts = rep_graph.vc_options ([0, 1, 2], [1])
err_vis_vc = tuple ([(n, err_vis_opts) for n in p.loop_heads ()
if p.node_tags[n][0] == tags['C']])
err_vis = (('Err', err_vis_vc), tags['C'])
free_hyps.append (rep_graph.pc_false_hyp (err_vis))
addr_map = {}
for n in p.nodes:
if not p.node_tags[n][0].endswith ('_ASM'):
continue
if type (p.node_tags[n][1]) == tuple:
(fname, data) = p.node_tags[n][1]
if (logic.is_int (data) and is_addr (data)
and not fname.startswith ("instruction'")):
assert data not in addr_map, data
addr_map[data] = n
return (p, free_hyps, addr_map, fun_tag_pairs)
def get_uniform_loop_vc (p, n):
l_id = p.loop_id (n)
assert l_id != None, n
if n == l_id:
restrs = tuple ([(l_id, rep_graph.vc_offs (0))])
else:
restrs = tuple ([(l_id, rep_graph.vc_offs (1))])
restrs = search.restr_others_both (p, restrs, 2, 2)
return restrs
def get_vis (p, n, tag = None, focused_loops = None):
# not well configured for loops except in the 'uniform' case
if not tag:
tag = p.node_tags[n][0]
if focused_loops and tag in focused_loops:
l_id = focused_loops[tag]
assert p.loop_id (n) == l_id, (n, tag, l_id)
vc = get_uniform_loop_vc (p, n)
else:
(n, vc) = stack_logic.default_n_vc (p, n)
return ((n, vc), tag)
def get_pc_hyp_local (rep, n, focused_loops = None):
return rep_graph.pc_true_hyp (get_vis (rep.p, n,
focused_loops = focused_loops))
def find_actual_call_node (p, n):
"""we're getting call addresses from the binary trace, and using the
node naming convention to find a relevant graph node, but it might not
be the actual call node. a short breadth-first-search should hopefully
find it."""
stack = [(n, 3)]
init_n = n
while stack:
(n, limit) = stack.pop (0)
if limit < 0:
continue
if p.nodes[n].kind == 'Call':
return n
else:
for c in p.nodes[n].get_conts ():
stack.append ((c, limit -1))
trace ('failed to find Call node near %s' % init_n)
return None
def adj_eq_seq_for_asm_fun_link (fname):
cc = stack_logic.get_asm_calling_convention (fname)
if not cc:
return None
addrs = [(p, v.typ) for arg in cc['args']
for (_, p, v, _) in arg.get_mem_accesses ()]
inps = functions[fname].inputs
[stack_idx] = [i for (i, (nm, _)) in enumerate (inps)
if nm == 'stack']
def adj (seq):
(x_stack, y_stack) = seq[stack_idx]
xsub = dict ([(v, xv) for (v, (xv, _)) in azip (inps, seq)])
ysub = dict ([(v, yv) for (v, (_, yv)) in azip (inps, seq)])
from logic import var_subst
stk_eqs = [(syntax.mk_memacc (x_stack, var_subst (p, xsub), t),
syntax.mk_memacc (y_stack, var_subst (p, ysub), t))
for (p, t) in addrs]
return seq[:stack_idx] + seq[stack_idx + 1:] + stk_eqs
return adj
def get_unique_call_site (p, fname, tag):
ns = [n for n in p.nodes if p.nodes[n].kind == 'Call'
if p.nodes[n].fname == fname
if p.node_tags[n][0] == tag]
if len (ns) == 1:
[n] = ns
return n
else:
return None
def get_call_link_hyps (p, n, (from_tags, from_pair), (to_tags, to_pair),
focused_loops = None):
n = find_actual_call_node (p, n)
fname = p.nodes[n].fname
assert fname == to_pair.funs['ASM']
vis = get_vis (p, n, focused_loops = focused_loops)
hyps = rep_graph.mk_function_link_hyps (p, vis, to_tags['ASM'],
adjust_eq_seq = adj_eq_seq_for_asm_fun_link (fname))
c_fname = to_pair.funs['C']
cn = get_unique_call_site (p, c_fname, from_tags['C'])
if cn != None:
vis = get_vis (p, cn, focused_loops = focused_loops)
hyps += rep_graph.mk_function_link_hyps (p, vis, to_tags['C'])
return hyps
def refute_minimise_vis_hyps (rep, free_hyps, call_hyps, vis_pcs):
def test (call_hyps, vis_pcs):
hs = [h for grp in call_hyps for h in grp] + [
h for (h, _) in vis_pcs] + free_hyps
return rep.test_hyp_whyps (syntax.false_term, hs)
if not test (call_hyps, vis_pcs):
return None
for i in range (1, len (call_hyps)):
vis_pcs2 = [(h, (addr, j)) for (h, (addr, j)) in vis_pcs
if j < i]
if test (call_hyps [ - i : ], vis_pcs2):
call_hyps = call_hyps [ - i : ]
vis_pcs = vis_pcs2
break
vis_pcs.sort (cmp = lambda (h, (addr, i)), (h2, (addr2, j)): j - i)
kept = []
for i in range (len (vis_pcs)):
if not test (call_hyps, kept + vis_pcs[i + 1 :]):
kept.append (vis_pcs[i])
return (call_hyps, kept)
verdicts = {}
new_refutes = {}
def previous_verdict (call_stack, f, arc):
for (stack, points, verdict) in verdicts.get (f, []):
suffix = call_stack[len (call_stack) - len (stack) : ]
if tuple (suffix) == tuple (stack):
if verdict in ('impossible', 'impossible_in_loop'):
if set (points) <= set (arc):
return True
if verdict == 'possible':
if set (arc) <= set (points):
return False
return None
def identify_function (call_stack, addrs):
fs = set ([get_body_addrs_fun (addr) for addr in addrs]) - set ([None])
assert len (fs) <= 1, (fs, addrs)
if fs:
[f] = list (fs)
return f
call = call_stack[-1]
prev_fn = get_body_addrs_fun (call)
cn = find_actual_call_node (functions[prev_fn], call)
fn = functions[prev_fn].nodes[cn].fname
return fn
def build_compound_problem_with_links (call_stack, f):
funs = [get_body_addrs_fun (addr) for addr in call_stack] + [f]
(p, hyps, addr_map, tag_pairs) = build_compound_problem (funs)
call_tags = zip (tag_pairs[:-1], tag_pairs[1:])
call_hyps = [get_call_link_hyps (p, addr_map[n], from_tp, to_tp)
for (n, (from_tp, to_tp)) in zip (call_stack, call_tags)]
wcet_hyps = []
from rep_graph import eq_hyp
for (entry, tag, _, inputs) in p.entries:
entry_vis = ((entry, ()), tag)
for f in target_objects.hooks ('extra_wcet_assertions'):
for assn in f (inputs):
wcet_hyps.append (eq_hyp ((assn, entry_vis),
(syntax.true_term, entry_vis)))
return (p, hyps + [h for hs in call_hyps for h in hs]
+ wcet_hyps, addr_map)
def all_reachable (p, addrs):
assert set (addrs) <= set (p.nodes)
return all ([p.is_reachable_from (addrs[i], addrs[j]) or
p.is_reachable_from (addrs[j], addrs[i])
for i in range (len (addrs))
for j in range (i + 1, len (addrs))])
parent_ctxt_limit = 3
def call_stack_parent_arc_extras (stack, ctxt_arcs, max_length, top_loop):
rng = range (1, len (stack))[ - parent_ctxt_limit : ][ - max_length : ]
arc_extras = []
for i in rng:
prev_stack = stack[:i]
f = body_addrs[stack[i]]
p = functions[f].as_problem (problem.Problem)
arcs = ctxt_arcs[tuple (prev_stack)]
if top_loop != None and i == rng[0]:
assert uniform_loop_id (stack[i]) == top_loop, (stack, i)
arcs = [[x for x in a if uniform_loop_id (x) == top_loop]
for a in arcs]
arcs = [a for a in arcs if a]
arcs = [a for a in arcs if all_reachable (p, a + [stack[i]])]
arcs = sorted ([(len (a), a) for a in arcs])
if arcs:
(_, arc) = arcs[-1]
arc_extras.extend ([(addr, len (stack) - i)
for addr in arc])
return arc_extras
def add_arc_extras (arc, extras):
return [(addr, 0) for addr in arc] + extras
last_refute_attempt = [None]
has_complex_loop_cache = {}
def has_complex_loop (fname):
if fname in has_complex_loop_cache:
return has_complex_loop_cache[fname]
p = functions[fname].as_problem (problem.Problem)
p.do_analysis ()
result = bool ([h for h in p.loop_heads ()
if problem.has_inner_loop (p, h)])
has_complex_loop_cache[fname] = result
return result
def pick_stack_setup (call_stack):
# how much stack to use?
stack = list (call_stack [ - parent_ctxt_limit : ])
for (i, addr) in reversed (list (enumerate (stack))):
f2 = get_body_addrs_fun (addr)
if should_avoid_fun (f2) or has_complex_loop (f2):
return (None, stack [ i + 1 : ])
if uniform_loop_id (addr) != None:
return (uniform_loop_id (addr), stack [ i : ])
elif addr_in_loop (addr):
return (None, stack [ i + 1 : ])
return (None, stack)
loops_info_cache = {}
def fun_loops_info (fname):
if fname in loops_info_cache:
return loops_info_cache[fname]
p = functions[fname].as_problem (problem.Problem)
p.do_analysis ()
info = {}
for l_id in p.loop_heads ():
ext_reachable = [n for n in p.loop_body (l_id)
if [n2 for n2 in p.preds[n] if p.loop_id (n2) != l_id]]
if ext_reachable != [l_id]:
trace ("Loop in %s non-uniform, additional entries %s."
% (fname, ext_reachable))
uniform = False
elif problem.has_inner_loop (p, l_id):
trace ("Loop in %s non-uniform, inner loop." % fname)
uniform = False
else:
assert is_addr (l_id), (fname, l_id)
uniform = True
for n in p.loop_body (l_id):
info[n] = (l_id, uniform)
loops_info_cache[fname] = info
return info
def addr_in_loop (addr):
fname = get_body_addrs_fun (addr)
info = fun_loops_info (fname)
if addr not in info:
return None
(l_id, uniform) = info[addr]
return (l_id != None)
def uniform_loop_id (addr):
fname = get_body_addrs_fun (addr)
info = fun_loops_info (fname)
if addr not in info:
return None
(l_id, uniform) = info[addr]
if not uniform:
return None
return l_id
def refute_function_arcs (call_stack, arcs, ctxt_arcs):
last_refute_attempt[0] = (call_stack, arcs, ctxt_arcs)
f = identify_function (call_stack,
[(addr, 0) for arc in arcs for addr in arc])
# easy function limit refutations
if not (ctxt_within_function_limits (call_stack)
and function_reachable_within_limits (f)):
verdicts.setdefault (f, [])
if call_stack:
vdct = (call_stack, [], 'impossible')
else:
min_addr = min ([addr for arc in arcs for addr in arc])
vdct = ([], [min_addr], 'impossible')
verdicts[f].append (vdct)
new_refutes[f] = True
print 'added %s refutation %s: %s' % (f, vdct[0], vdct[1])
return
# ignore complex loops
if has_complex_loop (f):
print 'has complex loop: %s, skipping' % f
return
(top_loop, stack) = pick_stack_setup (call_stack)
arc_extras = call_stack_parent_arc_extras (call_stack, ctxt_arcs,
len (stack), top_loop)
arcs = [arc for arc in arcs
if previous_verdict (stack, f,
add_arc_extras (arc, arc_extras)) == None]
if not arcs:
return
funs = [body_addrs[addr] for addr in stack] + [f]
(p, hyps, addr_map, tag_pairs) = build_compound_problem (funs)
focused_loops = {}
if top_loop != None:
top_loop_split = p.loop_id (addr_map[top_loop])
top_loop_tag = p.node_tags[top_loop_split][0]
assert top_loop_tag in tag_pairs[0][0].values ()
focused_loops[top_loop_tag] = top_loop_split
rep = rep_graph.mk_graph_slice (p)
call_tags = zip (tag_pairs[:-1], tag_pairs[1:])
call_hyps = [get_call_link_hyps (p, addr_map[n], from_tp, to_tp,
focused_loops = focused_loops)
for (n, (from_tp, to_tp)) in zip (stack, call_tags)]
for arc in arcs:
arc2 = add_arc_extras (arc, arc_extras)
if previous_verdict (stack, f, arc2) != None:
continue
print 'fresh %s arc %s: %s' % (f, stack, arc)
vis_pcs = [(get_pc_hyp_local (rep, addr_map[addr],
focused_loops = focused_loops), (addr, i))
for (addr, i) in arc2]
vis_pcs = dict (vis_pcs).items ()
res = refute_minimise_vis_hyps (rep, hyps, call_hyps, vis_pcs)
if res == None:
verdicts.setdefault (f, [])
verdicts[f].append ((stack, list (arc2), 'possible'))
continue
(used_call_hyps, used_vis_pcs) = res
stack2 = stack [ - len (used_call_hyps) : ]
used_vis = [(addr, i) for (_, (addr, i)) in used_vis_pcs]
verdicts.setdefault (f, [])
if len (stack2) == len (stack) and top_loop != None:
vdct = 'impossible_in_loop'
else:
vdct = 'impossible'
verdicts[f].append ((stack2, used_vis, vdct))
new_refutes[f] = True
print 'added %s refutation %s: %s' % (f, stack, used_vis)
# function limits. mostly used by loop_bounds, but also present here
def function_limit (fname):
for hook in target_objects.hooks ('wcet_function_limits'):
if fname in hook:
return hook[fname]
return None
# functions to avoid. won't ever include these in parent contexts for
# arc refutations
def should_avoid_fun (fname):
for hook in target_objects.hooks ('wcet_functions_to_avoid'):
if fname in hook:
return True
return False
reachable_functions = {}
def build_reachable_functions ():
fcall_graph = dict ([(fname, functions[fname].function_calls ())
for fname in functions])
is_reachable = dict ([(fname, False) for fname in functions])
called = set ([f for fs in fcall_graph.itervalues () for f in fs])
uncalled = set (fcall_graph) - called
frontier = uncalled
while frontier:
f = frontier.pop ()
if is_reachable[f]:
continue
elif function_limit (f) == 0:
continue
else:
is_reachable[f] = True
frontier.update (fcall_graph[f])
reachable_functions.update (is_reachable)
reachable_functions[('IsLoaded', None)] = True
def function_reachable_within_limits (fname):
if fname not in reachable_functions:
build_reachable_functions ()
return reachable_functions[fname]
def ctxt_within_function_limits (call_ctxt):
for (i, addr) in enumerate (call_ctxt):
fname = identify_function (call_ctxt[:i], [addr])
if not function_reachable_within_limits (fname):
return False
return True
def serialise_verdicts (fname):
f = open (fname, 'w')
for (_, vs) in verdicts.iteritems ():
for (stack, visits, verdict) in vs:
visit_str = '[%s]' % (','.join (['%d<-%d' % (addr, i)
for (addr, i) in visits]))
f.write ('%s: %s: %s\n' % (list (stack), visit_str,
verdict))
f.close ()
def load_verdicts (fname):
f = open (fname)
for l in f:
bits = l.split(':')
if len (bits) < 3:
bits = set ([bit for bit in bits if bit.strip()])
assert not bits, bits
[stack, visits, verdict] = bits
stack = parse_num_list (stack)
visits = parse_num_arrow_list (visits)
verdict = verdict.strip ()
assert verdict in ('possible', 'impossible',
'impossible_in_loop'), verdict
fn = identify_function (stack, visits)
verdicts.setdefault (fn, [])
verdicts[fn].append ((stack, visits, verdict))
f.close ()
last_report = [0]
exceptions = []
def refute (inp_fname, out_fname, prev_fnames, instance = None):
f = open (inp_fname)
ctxt_arcs = parse_ctxt_arcs (f)
f.close ()
body_addrs.clear ()
setup_body_addrs ()
verdicts.clear ()
new_refutes.clear ()
for fn in prev_fnames:
load_verdicts (fn)
report = {}
last_report[0] = report
for (ctxt, arcs) in ctxt_arcs.iteritems ():
if instance:
(a, b) = instance
if hash (('foo', tuple (ctxt))) % b != a:
continue
try:
refute_function_arcs (ctxt, arcs, ctxt_arcs)
report[ctxt] = 'Success'
except problem.Abort:
report[ctxt] = 'ProofAbort'
except Exception, e:
import sys, traceback
exceptions.append ((ctxt, arcs, ctxt_arcs))
exception = sys.exc_info ()
(etype, evalue, tb) = exception
ss = traceback.format_exception (etype, evalue, tb)
report[ctxt] = '\n'.join (['EXCEPTION'] + ss)
print 'EXCEPTION in handling %s, %s' % (ctxt, arcs)
for s in ss[:3]:
print s
if len (ss) > 3:
print '...'
serialise_verdicts (out_fname)
print 'Found new refutations: %s' % bool (new_refutes)
return (bool (new_refutes), report)
if __name__ == '__main__':
args = target_objects.load_target_args ()
prevs = [arg[5:] for arg in args if arg.startswith ('prev:')]
args = [arg for arg in args if not arg.startswith ('prev:')]
insts = [arg for arg in args if arg.startswith ('instance:')]
if insts:
args = [arg for arg in args if not arg.startswith ('instance:')]
assert len (insts) == 1, insts
[inst] = insts
bits = inst.split(':')
assert len (bits) == 3, (insts, bits)
[_, a, b] = bits
instance = (int (a), int (b))
else:
instance = None
if len (args) < 2:
print 'Usage: python trace_refute <target> <refutables> [prev:output] <output>'
print 'where <target> as per graph-refine, <refutables> from reconstruct.py'
print 'and <output> is output filename.'
print 'Optional previous output may be loaded.'
print 'e.g. python trace_refute new-gcc-O2 new-gcc-O2/ctxt_arcs.txt prev:refutes.txt refutes.txt'
sys.exit (1)
else:
(new, _) = refute (args[0], args[1], prevs,
instance = instance)
import sys
if new:
sys.exit (127)
else:
sys.exit (0)